These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 11724930)

  • 1. Specificity in transmembrane helix-helix interactions can define a hierarchy of stability for sequence variants.
    Fleming KG; Engelman DM
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14340-4. PubMed ID: 11724930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in apparent free energy of helix-helix dimerization in a biological membrane due to point mutations.
    Duong MT; Jaszewski TM; Fleming KG; MacKenzie KR
    J Mol Biol; 2007 Aug; 371(2):422-34. PubMed ID: 17570394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence context modulates the stability of a GxxxG-mediated transmembrane helix-helix dimer.
    Doura AK; Kobus FJ; Dubrovsky L; Hibbard E; Fleming KG
    J Mol Biol; 2004 Aug; 341(4):991-8. PubMed ID: 15289100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions.
    Sulistijo ES; MacKenzie KR
    J Mol Biol; 2006 Dec; 364(5):974-90. PubMed ID: 17049556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions.
    Senes A; Gerstein M; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):921-36. PubMed ID: 10677292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex interactions at the helix-helix interface stabilize the glycophorin A transmembrane dimer.
    Doura AK; Fleming KG
    J Mol Biol; 2004 Nov; 343(5):1487-97. PubMed ID: 15491626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of point mutations on the free energy of transmembrane alpha-helix dimerization.
    Fleming KG; Ackerman AL; Engelman DM
    J Mol Biol; 1997 Sep; 272(2):266-75. PubMed ID: 9299353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the recognition and association of transmembrane alpha-helices. The free energy of alpha-helix dimerization in glycophorin A.
    Hénin J; Pohorille A; Chipot C
    J Am Chem Soc; 2005 Jun; 127(23):8478-84. PubMed ID: 15941282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence specificity in the dimerization of transmembrane alpha-helices.
    Lemmon MA; Flanagan JM; Treutlein HR; Zhang J; Engelman DM
    Biochemistry; 1992 Dec; 31(51):12719-25. PubMed ID: 1463743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based prediction of the stability of transmembrane helix-helix interactions: the sequence dependence of glycophorin A dimerization.
    MacKenzie KR; Engelman DM
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3583-90. PubMed ID: 9520409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of hydrophobic matching on association of model transmembrane fragments containing a minimised glycophorin A dimerisation motif.
    Orzáez M; Lukovic D; Abad C; Pérez-Payá E; Mingarro I
    FEBS Lett; 2005 Mar; 579(7):1633-8. PubMed ID: 15757653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The GxxxG motif: a framework for transmembrane helix-helix association.
    Russ WP; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):911-9. PubMed ID: 10677291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations.
    Petrache HI; Grossfield A; MacKenzie KR; Engelman DM; Woolf TB
    J Mol Biol; 2000 Sep; 302(3):727-46. PubMed ID: 10986130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of glycophorin A transmembrane helix dimerization in C14 betaine micelles.
    Fleming KG; Ren CC; Doura AK; Eisley ME; Kobus FJ; Stanley AM
    Biophys Chem; 2004 Mar; 108(1-3):43-9. PubMed ID: 15043920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mutational study of transmembrane helix-helix interactions.
    Prodöhl A; Weber M; Dreher C; Schneider D
    Biochimie; 2007 Nov; 89(11):1433-7. PubMed ID: 17688996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standardizing the free energy change of transmembrane helix-helix interactions.
    Fleming KG
    J Mol Biol; 2002 Oct; 323(3):563-71. PubMed ID: 12381309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of proline residues in transmembrane helix packing.
    Orzáez M; Salgado J; Giménez-Giner A; Pérez-Payá E; Mingarro I
    J Mol Biol; 2004 Jan; 335(2):631-40. PubMed ID: 14672669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermonomer hydrogen bonds enhance GxxxG-driven dimerization of the BNIP3 transmembrane domain: roles for sequence context in helix-helix association in membranes.
    Lawrie CM; Sulistijo ES; MacKenzie KR
    J Mol Biol; 2010 Mar; 396(4):924-36. PubMed ID: 20026130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The membrane environment modulates self-association of the human GpA TM domain--implications for membrane protein folding and transmembrane signaling.
    Anbazhagan V; Schneider D
    Biochim Biophys Acta; 2010 Oct; 1798(10):1899-907. PubMed ID: 20603102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of the native and non-native states of the glycophorin transmembrane helix dimer.
    Mottamal M; Zhang J; Lazaridis T
    Proteins; 2006 Mar; 62(4):996-1009. PubMed ID: 16395713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.