These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 11726051)

  • 1. Scaling laws for wall shear stress through stenoses under steady and pulsatile flow conditions.
    Chua IP; Yu SC; Xue Q
    Proc Inst Mech Eng H; 2001; 215(5):503-14. PubMed ID: 11726051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A scaling law for wall shear rate through an arterial stenosis.
    Siegel JM; Markou CP; Ku DN; Hanson SR
    J Biomech Eng; 1994 Nov; 116(4):446-51. PubMed ID: 7869720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses.
    Li MX; Beech-Brandt JJ; John LR; Hoskins PR; Easson WJ
    J Biomech; 2007; 40(16):3715-24. PubMed ID: 17723230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-stenotic core flow behavior in pulsatile flow and its effects on wall shear stress.
    Lieber BB; Giddens DP
    J Biomech; 1990; 23(6):597-605. PubMed ID: 2341421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsatile flow through a constricted tube: effect of stenosis morphology on hemodynamic parameters.
    Kelidis P; Konstantinidis E
    Comput Methods Biomech Biomed Engin; 2018 May; 21(7):479-487. PubMed ID: 30010433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonlinear axisymmetric model with fluid-wall interactions for steady viscous flow in stenotic elastic tubes.
    Tang D; Yang J; Yang C; Ku DN
    J Biomech Eng; 1999 Oct; 121(5):494-501. PubMed ID: 10529916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A boundary layer model for wall shear stress in arterial stenosis.
    Provenzano PP; Rutland CJ
    Biorheology; 2002; 39(6):743-54. PubMed ID: 12454440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new multiphysics model for the physiological responses of vascular endothelial cells to fluid shear stress.
    Kang HG; Shim EB; Chang KS
    J Physiol Sci; 2007 Oct; 57(5):299-309. PubMed ID: 17963593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical parametric study of the mechanical action of pulsatile blood flow onto axisymmetric stenosed arteries.
    Belzacq T; Avril S; Leriche E; Delache A
    Med Eng Phys; 2012 Dec; 34(10):1483-95. PubMed ID: 22464939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow patterns and wall shear stress distribution in human internal carotid arteries: the geometric effect on the risk for stenoses.
    Zhang C; Xie S; Li S; Pu F; Deng X; Fan Y; Li D
    J Biomech; 2012 Jan; 45(1):83-9. PubMed ID: 22079384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-induced wall shear stress in abdominal aortic aneurysms: Part II--pulsatile flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):319-28. PubMed ID: 12186711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of secondary flow in steady and pulsatile flows through a symmetrical bifurcation.
    Fukushima T; Homma T; Azuma T; Harakawa K
    Biorheology; 1987; 24(1):3-12. PubMed ID: 3651581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamics of pulsatile flow in distensible model arteries.
    Liepsch DW; Zimmer R
    Technol Health Care; 1995 Dec; 3(3):185-99. PubMed ID: 8749865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Eddy simulation of pulsatile blood flow.
    Paul MC; Mamun Molla M; Roditi G
    Med Eng Phys; 2009 Jan; 31(1):153-9. PubMed ID: 18562236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen induced thrombus formation at the apex of eccentric stenoses--a time course study with non-anticoagulated human blood.
    Barstad RM; Kierulf P; Sakariassen KS
    Thromb Haemost; 1996 Apr; 75(4):685-92. PubMed ID: 8743200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of a pulsatile non-Newtonian flow past a stenosed 2D artery with atherosclerosis.
    Tian FB; Zhu L; Fok PW; Lu XY
    Comput Biol Med; 2013 Sep; 43(9):1098-113. PubMed ID: 23930803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries.
    Glagov S; Zarins C; Giddens DP; Ku DN
    Arch Pathol Lab Med; 1988 Oct; 112(10):1018-31. PubMed ID: 3052352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laminar-to-turbulent transition in pulsatile flow through a stenosis.
    Mallinger F; Drikakis D
    Biorheology; 2002; 39(3-4):437-41. PubMed ID: 12122264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery.
    Sun N; Torii R; Wood NB; Hughes AD; Thom SA; Xu XY
    J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.