BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 11726278)

  • 1. Effects of cobalt-substitution of the active zinc ion in thermolysin on its activity and active-site microenvironment.
    Kuzuya K; Inouye K
    J Biochem; 2001 Dec; 130(6):783-8. PubMed ID: 11726278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pH, temperature, and alcohols on the remarkable activation of thermolysin by salts.
    Inouye K; Lee SB; Nambu K; Tonomura B
    J Biochem; 1997 Aug; 122(2):358-64. PubMed ID: 9378714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of amino acid residues at the cleavable site of substrates on the remarkable activation of thermolysin by salts.
    Inouye K; Lee SB; Tonomura B
    Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):133-8. PubMed ID: 8670097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of mutations of thermolysin, as N116 to asp and asp150 to glu, on salt-induced activation and stabilization.
    Menach E; Yasukawa K; Inouye K
    Biosci Biotechnol Biochem; 2013; 77(4):741-6. PubMed ID: 23563542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of zinc substitutions in the active site of thermolysin.
    Holland DR; Hausrath AC; Juers D; Matthews BW
    Protein Sci; 1995 Oct; 4(10):1955-65. PubMed ID: 8535232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of site-directed mutagenesis of the surface residues Gln128 and Gln225 of thermolysin on its catalytic activity.
    Tatsumi C; Hashida Y; Yasukawa K; Inouye K
    J Biochem; 2007 Jun; 141(6):835-42. PubMed ID: 17405799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of salts on the solubility of thermolysin: a remarkable increase in the solubility as well as the activity by the addition of salts without aggregation or dispersion of thermolysin.
    Inouye K; Kuzuya K; Tonomura B
    J Biochem; 1998 May; 123(5):847-52. PubMed ID: 9562615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic analysis of the activation-and-inhibition dual effects of cobalt ion on thermolysin activity.
    Hashida Y; Inouye K
    J Biochem; 2007 Jun; 141(6):843-53. PubMed ID: 17405798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of salts on thermolysin: activation of hydrolysis and synthesis of N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester, and a unique change in the absorption spectrum of thermolysin.
    Inouye K
    J Biochem; 1992 Sep; 112(3):335-40. PubMed ID: 1429520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nitration and amination of tyrosyl residues in thermolysin on its hydrolytic activity and its remarkable activation by salts.
    Inouye K; Lee SB; Tonomura B
    J Biochem; 1998 Jul; 124(1):72-8. PubMed ID: 9644248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium chloride enhances markedly the thermal stability of thermolysin as well as its catalytic activity.
    Inouye K; Kuzuya K; Tonomura B
    Biochim Biophys Acta; 1998 Oct; 1388(1):209-14. PubMed ID: 9774734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the mutational combinations on the activity and stability of thermolysin.
    Kusano M; Yasukawa K; Inouye K
    J Biotechnol; 2010 May; 147(1):7-16. PubMed ID: 20214932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin.
    Kusano M; Yasukawa K; Hashida Y; Inouye K
    J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic activity of thermolysin under extremes of pressure and temperature: modulation by metal ions.
    Kudryashova EV; Mozhaev VV; Balny C
    Biochim Biophys Acta; 1998 Jul; 1386(1):199-210. PubMed ID: 9675281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the binding of Z-L-tryptophan and Z-L-phenylalanine to thermolysin and stromelysin-1 in aqueous solutions.
    Ceruso M; Howe N; Malthouse JP
    Biochim Biophys Acta; 2012 Feb; 1824(2):303-10. PubMed ID: 22037182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spectrophotometric study on the interaction of thermolysin with chloride and bromide ions, and the state of tryptophyl residue 115.
    Inouye K; Kuzuya K; Tonomura B
    J Biochem; 1994 Sep; 116(3):530-5. PubMed ID: 7852270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Esterase activity of zinc neutral proteases.
    Holmquist B; Vallee BL
    Biochemistry; 1976 Jan; 15(1):101-7. PubMed ID: 2276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanism of the inhibitory effect of cobalt ion on thermolysin activity and the suppressive effect of calcium ion on the cobalt ion-dependent inactivation of thermolysin.
    Hashida Y; Inouye K
    J Biochem; 2007 Jun; 141(6):879-88. PubMed ID: 17405797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of a mercaptan-thermolysin complex illustrates mode of inhibition of zinc proteases by substrate-analogue mercaptans.
    Monzingo AF; Matthews BW
    Biochemistry; 1982 Jul; 21(14):3390-4. PubMed ID: 7052122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of N-carboxymethyl dipeptide inhibitors to thermolysin determined by X-ray crystallography: a novel class of transition-state analogues for zinc peptidases.
    Monzingo AF; Matthews BW
    Biochemistry; 1984 Nov; 23(24):5724-9. PubMed ID: 6395881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.