BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 11726703)

  • 41. Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling.
    Li J; Li G; Gao S; Martinez C; He G; Zhou Z; Huang X; Lee JH; Zhang H; Shen Y; Wang H; Deng XW
    Plant Cell; 2010 Nov; 22(11):3634-49. PubMed ID: 21097709
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic identification of FIN2, a far red light-specific signaling component of Arabidopsis thaliana.
    Soh MS; Hong SH; Hanzawa H; Furuya M; Nam HG
    Plant J; 1998 Nov; 16(4):411-9. PubMed ID: 9881161
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-transcriptional repression of the Arabidopsis NAC transcription factor ATAF2 and its genetic interaction with phytochrome A in modulating seedling photomorphogenesis.
    Peng H; Phung J; Zhai Y; Neff MM
    Planta; 2020 Sep; 252(4):48. PubMed ID: 32892254
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Missense mutation in the PAS2 domain of phytochrome A impairs subnuclear localization and a subset of responses.
    Yanovsky MJ; Luppi JP; Kirchbauer D; Ogorodnikova OB; Sineshchekov VA; Adam E; Kircher S; Staneloni RJ; Schäfer E; Nagy F; Casal JJ
    Plant Cell; 2002 Jul; 14(7):1591-603. PubMed ID: 12119377
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Arabidopsis thaliana TERMINAL FLOWER2 is involved in light-controlled signalling during seedling photomorphogenesis.
    Valdés AE; Rizzardi K; Johannesson H; Para A; Sundås-Larsson A; Landberg K
    Plant Cell Environ; 2012 Jun; 35(6):1013-25. PubMed ID: 22145973
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis.
    Shinomura T; Uchida K; Furuya M
    Plant Physiol; 2000 Jan; 122(1):147-56. PubMed ID: 10631258
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional profiling reveals that only a small number of phytochrome-regulated early-response genes in Arabidopsis are necessary for optimal deetiolation.
    Khanna R; Shen Y; Toledo-Ortiz G; Kikis EA; Johannesson H; Hwang YS; Quail PH
    Plant Cell; 2006 Sep; 18(9):2157-71. PubMed ID: 16891401
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phytochrome E controls light-induced germination of Arabidopsis.
    Hennig L; Stoddart WM; Dieterle M; Whitelam GC; Schäfer E
    Plant Physiol; 2002 Jan; 128(1):194-200. PubMed ID: 11788765
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Geomagnetic field impacts on cryptochrome and phytochrome signaling.
    Agliassa C; Narayana R; Christie JM; Maffei ME
    J Photochem Photobiol B; 2018 Aug; 185():32-40. PubMed ID: 29864723
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The SPA1-like proteins SPA3 and SPA4 repress photomorphogenesis in the light.
    Laubinger S; Hoecker U
    Plant J; 2003 Aug; 35(3):373-85. PubMed ID: 12887588
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phytochrome interacting factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light.
    Lorrain S; Trevisan M; Pradervand S; Fankhauser C
    Plant J; 2009 Nov; 60(3):449-61. PubMed ID: 19619162
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Arabidopsis COG1 gene encodes a Dof domain transcription factor and negatively regulates phytochrome signaling.
    Park DH; Lim PO; Kim JS; Cho DS; Hong SH; Nam HG
    Plant J; 2003 Apr; 34(2):161-71. PubMed ID: 12694592
    [TBL] [Abstract][Full Text] [Related]  

  • 53. KIDARI, encoding a non-DNA Binding bHLH protein, represses light signal transduction in Arabidopsis thaliana.
    Hyun Y; Lee I
    Plant Mol Biol; 2006 May; 61(1-2):283-96. PubMed ID: 16786307
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phytochrome-mediated agravitropism in Arabidopsis hypocotyls requires GIL1 and confers a fitness advantage.
    Allen T; Ingles PJ; Praekelt U; Smith H; Whitelam GC
    Plant J; 2006 May; 46(4):641-8. PubMed ID: 16640600
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reversible SUMOylation of FHY1 Regulates Phytochrome A Signaling in Arabidopsis.
    Qu GP; Li H; Lin XL; Kong X; Hu ZL; Jin YH; Liu Y; Song HL; Kim DH; Lin R; Li J; Jin JB
    Mol Plant; 2020 Jun; 13(6):879-893. PubMed ID: 32298785
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sucrose control of phytochrome A signaling in Arabidopsis.
    Dijkwel PP; Huijser C; Weisbeek PJ; Chua NH; Smeekens SC
    Plant Cell; 1997 Apr; 9(4):583-95. PubMed ID: 9144963
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Subcellular sites of the signal transduction and degradation of phytochrome A.
    Toledo-Ortiz G; Kiryu Y; Kobayashi J; Oka Y; Kim Y; Nam HG; Mochizuki N; Nagatani A
    Plant Cell Physiol; 2010 Oct; 51(10):1648-60. PubMed ID: 20739301
    [TBL] [Abstract][Full Text] [Related]  

  • 58. poc1: an Arabidopsis mutant perturbed in phytochrome signaling because of a T DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting bHLH protein.
    Halliday KJ; Hudson M; Ni M; Qin M; Quail PH
    Proc Natl Acad Sci U S A; 1999 May; 96(10):5832-7. PubMed ID: 10318970
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of far-red light-regulated genome expression profiles of phytochrome A pathway mutants in Arabidopsis.
    Wang H; Ma L; Habashi J; Li J; Zhao H; Deng XW
    Plant J; 2002 Dec; 32(5):723-33. PubMed ID: 12472688
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana.
    Oh E; Kim J; Park E; Kim JI; Kang C; Choi G
    Plant Cell; 2004 Nov; 16(11):3045-58. PubMed ID: 15486102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.