These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11728180)

  • 21. Methodology for protein-ligand binding studies: application to a model for drug resistance, the HIV/FIV protease system.
    Dominy BN; Brooks CL
    Proteins; 1999 Aug; 36(3):318-31. PubMed ID: 10409825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of the binding energy for small molecules, peptides and proteins.
    Schapira M; Totrov M; Abagyan R
    J Mol Recognit; 1999; 12(3):177-90. PubMed ID: 10398408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.
    Chetty S; Bhakat S; Martin AJ; Soliman ME
    J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibitor docking screened by the modified SAFE_p scoring function: application to cyclic urea HIV-1 PR inhibitors.
    Vilar S; Villaverde MC; Sussman F
    J Comput Chem; 2007 Oct; 28(13):2216-25. PubMed ID: 17450567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamic and free energy studies of primary resistance mutations in HIV-1 protease-ritonavir complexes.
    Aruksakunwong O; Wolschann P; Hannongbua S; Sompornpisut P
    J Chem Inf Model; 2006; 46(5):2085-92. PubMed ID: 16995739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations.
    Wittayanarakul K; Aruksakunwong O; Sompornpisut P; Sanghiran-Lee V; Parasuk V; Pinitglang S; Hannongbua S
    J Chem Inf Model; 2005; 45(2):300-8. PubMed ID: 15807491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting relative binding affinities of non-peptide HIV protease inhibitors with free energy perturbation calculations.
    McCarrick MA; Kollman PA
    J Comput Aided Mol Des; 1999 Mar; 13(2):109-21. PubMed ID: 10091118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the molecular dynamics and calculated binding free energies for nine FDA-approved HIV-1 PR drugs against subtype B and C-SA HIV PR.
    Ahmed SM; Kruger HG; Govender T; Maguire GE; Sayed Y; Ibrahim MA; Naicker P; Soliman ME
    Chem Biol Drug Des; 2013 Feb; 81(2):208-18. PubMed ID: 23017010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate ensemble molecular dynamics binding free energy ranking of multidrug-resistant HIV-1 proteases.
    Sadiq SK; Wright DW; Kenway OA; Coveney PV
    J Chem Inf Model; 2010 May; 50(5):890-905. PubMed ID: 20384328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of binding free energies for HIV proteinase inhibitors by molecular dynamics simulations.
    Hansson T; Aqvist J
    Protein Eng; 1995 Nov; 8(11):1137-44. PubMed ID: 8819979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suppression of HIV-1 protease inhibitor resistance by phosphonate-mediated solvent anchoring.
    Cihlar T; He GX; Liu X; Chen JM; Hatada M; Swaminathan S; McDermott MJ; Yang ZY; Mulato AS; Chen X; Leavitt SA; Stray KM; Lee WA
    J Mol Biol; 2006 Oct; 363(3):635-47. PubMed ID: 16979654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimates of relative binding free energies for HIV protease inhibitors using different levels of approximations.
    Lee CY; Yang PK; Tzou WS; Hwang MJ
    Protein Eng; 1998 Jun; 11(6):429-37. PubMed ID: 9725621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calculation of relative differences in the binding free energies of HIV1 protease inhibitors: a thermodynamic cycle perturbation approach.
    Reddy MR; Varney MD; Kalish V; Viswanadhan VN; Appelt K
    J Med Chem; 1994 Apr; 37(8):1145-52. PubMed ID: 8164256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fast and accurate determination of the relative binding affinities of small compounds to HIV-1 protease using non-equilibrium work.
    Ngo ST; Hung HM; Nguyen MT
    J Comput Chem; 2016 Dec; 37(31):2734-2742. PubMed ID: 27709639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics simulations of 14 HIV protease mutants in complexes with indinavir.
    Chen X; Weber IT; Harrison RW
    J Mol Model; 2004 Dec; 10(5-6):373-81. PubMed ID: 15597206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Occluded molecular surface analysis of ligand-macromolecule contacts: application to HIV-1 protease-inhibitor complexes.
    Pattabiraman N
    J Med Chem; 1999 Sep; 42(19):3821-34. PubMed ID: 10508431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors.
    Li D; Liu MS; Ji B; Hwang K; Huang Y
    J Chem Phys; 2009 Jun; 130(21):215102. PubMed ID: 19508101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Free-energy analysis of enzyme-inhibitor binding: aspartic proteinase-pepstatin complexes.
    Kalra P; Das A; Jayaram B
    Appl Biochem Biotechnol; 2001; 96(1-3):93-108. PubMed ID: 11783905
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational titration analysis of a multiprotic HIV-1 protease-ligand complex.
    Spyrakis F; Fornabaio M; Cozzini P; Mozzarelli A; Abraham DJ; Kellogg GE
    J Am Chem Soc; 2004 Sep; 126(38):11764-5. PubMed ID: 15382890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Revealing origin of decrease in potency of darunavir and amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations.
    Chen J; Liang Z; Wang W; Yi C; Zhang S; Zhang Q
    Sci Rep; 2014 Nov; 4():6872. PubMed ID: 25362963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.