BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11728475)

  • 1. Mutational analysis of the iron binding site of Saccharomyces cerevisiae ferroxidase Fet3. An in vivo study.
    Bonaccorsi di Patti MC; Paronetto MP; Dolci V; Felice MR; Lania A; Musci G
    FEBS Lett; 2001 Nov; 508(3):475-8. PubMed ID: 11728475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The essential role of Glu-185 and Tyr-354 residues in the ferroxidase activity of Saccharomyces cerevisiae Fet3.
    Bonaccorsi di Patti MC; Felice MR; Camuti AP; Lania A; Musci G
    FEBS Lett; 2000 Apr; 472(2-3):283-6. PubMed ID: 10788627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific aspartate residues in FET3 control high-affinity iron transport in Saccharomyces cerevisiae.
    Bonaccorsi di Patti MC; Felice MR; De Domenico I; Lania A; Alaleona F; Musci G
    Yeast; 2005 Jul; 22(9):677-87. PubMed ID: 16032772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted suppression of the ferroxidase and iron trafficking activities of the multicopper oxidase Fet3p from Saccharomyces cerevisiae.
    Wang TP; Quintanar L; Severance S; Solomon EI; Kosman DJ
    J Biol Inorg Chem; 2003 Jul; 8(6):611-20. PubMed ID: 12684851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferrous binding to the multicopper oxidases Saccharomyces cerevisiae Fet3p and human ceruloplasmin: contributions to ferroxidase activity.
    Quintanar L; Gebhard M; Wang TP; Kosman DJ; Solomon EI
    J Am Chem Soc; 2004 Jun; 126(21):6579-89. PubMed ID: 15161286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase.
    De Silva DM; Askwith CC; Eide D; Kaplan J
    J Biol Chem; 1995 Jan; 270(3):1098-101. PubMed ID: 7836366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic analysis of the trinuclear cluster in the Fet3 protein from yeast, a multinuclear copper oxidase.
    Blackburn NJ; Ralle M; Hassett R; Kosman DJ
    Biochemistry; 2000 Mar; 39(9):2316-24. PubMed ID: 10694398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of the ferrous iron specificity of the yeast ferroxidase, Fet3p.
    Stoj CS; Augustine AJ; Zeigler L; Solomon EI; Kosman DJ
    Biochemistry; 2006 Oct; 45(42):12741-9. PubMed ID: 17042492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning of Pichia pastoris Fet3: insights into the high affinity iron uptake system.
    Paronetto MP; Miele R; Maugliani A; Borro M; Bonaccorsi di Patti MC
    Arch Biochem Biophys; 2001 Aug; 392(1):162-7. PubMed ID: 11469807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for iron channeling in the Fet3p-Ftr1p high-affinity iron uptake complex in the yeast plasma membrane.
    Kwok EY; Severance S; Kosman DJ
    Biochemistry; 2006 May; 45(20):6317-27. PubMed ID: 16700543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function.
    Stoj C; Kosman DJ
    FEBS Lett; 2003 Nov; 554(3):422-6. PubMed ID: 14623105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional studies of hephaestin in yeast: evidence for multicopper oxidase activity in the endocytic pathway.
    Li L; Vulpe CD; Kaplan J
    Biochem J; 2003 Nov; 375(Pt 3):793-8. PubMed ID: 12921533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infection structure-specific reductive iron assimilation is required for cell wall integrity and full virulence of the maize pathogen Colletotrichum graminicola.
    Albarouki E; Deising HB
    Mol Plant Microbe Interact; 2013 Jun; 26(6):695-708. PubMed ID: 23639025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The unusual intersubunit ferroxidase center of Listeria innocua Dps is required for hydrogen peroxide detoxification but not for iron uptake. A study with site-specific mutants.
    Ilari A; Latella MC; Ceci P; Ribacchi F; Su M; Giangiacomo L; Stefanini S; Chasteen ND; Chiancone E
    Biochemistry; 2005 Apr; 44(15):5579-87. PubMed ID: 15823016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral and kinetic properties of the Fet3 protein from Saccharomyces cerevisiae, a multinuclear copper ferroxidase enzyme.
    Hassett RF; Yuan DS; Kosman DJ
    J Biol Chem; 1998 Sep; 273(36):23274-82. PubMed ID: 9722559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of human ceruloplasmin:. production of a proteolytically stable protein and structure-activity relationships of type 1 sites.
    Bielli P; Bellenchi GC; Calabrese L
    J Biol Chem; 2001 Jan; 276(4):2678-85. PubMed ID: 11042176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core glycan in the yeast multicopper ferroxidase, Fet3p: a case study of N-linked glycosylation, protein maturation, and stability.
    Ziegler L; Terzulli A; Sedlak E; Kosman DJ
    Protein Sci; 2010 Sep; 19(9):1739-50. PubMed ID: 20662012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A permease-oxidase complex involved in high-affinity iron uptake in yeast.
    Stearman R; Yuan DS; Yamaguchi-Iwai Y; Klausner RD; Dancis A
    Science; 1996 Mar; 271(5255):1552-7. PubMed ID: 8599111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homology modeling of the multicopper oxidase Fet3 gives new insights in the mechanism of iron transport in yeast.
    di Patti MC; Pascarella S; Catalucci D; Calabrese L
    Protein Eng; 1999 Nov; 12(11):895-7. PubMed ID: 10585494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha-synuclein inhibits Snx3-retromer-mediated retrograde recycling of iron transporters in S. cerevisiae and C. elegans models of Parkinson's disease.
    Patel D; Xu C; Nagarajan S; Liu Z; Hemphill WO; Shi R; Uversky VN; Caldwell GA; Caldwell KA; Witt SN
    Hum Mol Genet; 2018 May; 27(9):1514-1532. PubMed ID: 29452354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.