BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11728747)

  • 1. The use of vapour phase ultra-violet spectroscopy for the analysis of arson accelerants in fire scene debris.
    McCurdy RJ; Atwell T; Cole MD
    Forensic Sci Int; 2001 Dec; 123(2-3):191-201. PubMed ID: 11728747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valid internal standard technique for arson detection based on gas chromatography-mass spectrometry.
    Salgueiro PA; Borges CM; Bettencourt da Silva RJ
    J Chromatogr A; 2012 Sep; 1257():189-94. PubMed ID: 22920302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the relative sensitivities of the adsorption wire and other methods for the detection of accelerant residues in fire debris.
    Twibell JD; Home JM; Smalldon KW
    J Forensic Sci Soc; 1982 Apr; 22(2):155-9. PubMed ID: 7097235
    [No Abstract]   [Full Text] [Related]  

  • 4. The concentration and analysis of volatile hydrocarbons in fire debris using Tenax-GC.
    Russell LW
    J Forensic Sci Soc; 1981 Oct; 21(4):317-26. PubMed ID: 7310366
    [No Abstract]   [Full Text] [Related]  

  • 5. Interpretation of accelerants in blood of cadavers found in the wreckage after fire.
    Iwasaki Y; Yashiki M; Kojima T; Miyazaki T
    Am J Forensic Med Pathol; 1998 Mar; 19(1):80-6. PubMed ID: 9539399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical fingerprinting of petrochemicals for arson investigations using two-dimensional gas chromatography - flame ionisation detection and multivariate analysis.
    Pandohee J; Hughes JG; Pearson JR; A H Jones O
    Sci Justice; 2020 Jul; 60(4):381-387. PubMed ID: 32650940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forensic investigation of arson residue by infrared and Raman spectroscopy: From conventional to non-destructive techniques.
    Yadav VK; Nigam K; Srivastava A
    Med Sci Law; 2020 Jul; 60(3):206-215. PubMed ID: 32279580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Research progress on interference in the identification of accelerants in a fire scene].
    Yin G; Qian P; Liqiu F; Jin J; Liu L; Zhang J
    Se Pu; 2022 May; 40(5):401-408. PubMed ID: 35477999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the effects of a Micelle Encapsulator Fire Suppression Agent on dynamic headspace analysis of fire debris samples.
    McGee E; Lang TL
    J Forensic Sci; 2002 Mar; 47(2):267-74. PubMed ID: 11908594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analysis of human tissue samples for volatile fire accelerants].
    Treibs R
    Arch Kriminol; 2014; 233(3-4):95-113. PubMed ID: 24855737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of arson fire debris by low temperature dynamic headspace adsorption porous layer open tubular columns.
    Nichols JE; Harries ME; Lovestead TM; Bruno TJ
    J Chromatogr A; 2014 Mar; 1334():126-38. PubMed ID: 24569007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential dangers of accelerant use in arson.
    Heath K; Kobus H; Byard RW
    J Forensic Leg Med; 2011 Feb; 18(2):49-51. PubMed ID: 21315296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of arson accelerants by gas chromatographic patterns produced by a digital log electrometer.
    Chisum WJ; Elzerman TR
    J Forensic Sci; 1972 Apr; 17(2):280-91. PubMed ID: 4679802
    [No Abstract]   [Full Text] [Related]  

  • 14. The detection and analysis of ignitable liquid residues extracted from human skin using SPME/GC.
    Almirall JR; Wang J; Lothridge K; Furton KG
    J Forensic Sci; 2000 Mar; 45(2):453-61. PubMed ID: 10782973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of an HS-MS for the detection of ignitable liquids from fire debris.
    Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG
    Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of compressed air foam on the detection of hydrocarbon fuels in fire debris samples.
    Coulson SA; Morgan-Smith RK; Noble D
    Sci Justice; 2000; 40(4):257-60. PubMed ID: 11094822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the tracheal contents using headspace gas chromatography-mass spectrometry to screen for accelerant use.
    Adachi N; Kinoshita H; Nishiguchi M; Takahashi M; Ouchi H; Minami T; Matsui K; Yamamura T; Motomura H; Ohtsu N; Yoshida S; Ameno K; Hishida S
    Soud Lek; 2009 Jan; 54(1):2-3. PubMed ID: 19402599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Analysis of group components in oils and aromatics in fuel oils].
    Guan Y; Zhao J; Liu W; Wang H
    Se Pu; 2004 Sep; 22(5):509-14. PubMed ID: 15706941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-mortem test for low-boiling arson residues of gasoline by gas chromatography-ion-trap mass spectrometry.
    Schuberth J
    J Chromatogr B Biomed Appl; 1994 Dec; 662(1):113-7. PubMed ID: 7894683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Accelerants in Fire Debris - Data Interpretation.
    Bertsch W
    Forensic Sci Rev; 1997 Jun; 9(1):1-22. PubMed ID: 26270863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.