These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 11729203)

  • 1. Metabolic engineering in yeast demonstrates that S-adenosylmethionine controls flux through the methylenetetrahydrofolate reductase reaction in vivo.
    Roje S; Chan SY; Kaplan F; Raymond RK; Horne DW; Appling DR; Hanson AD
    J Biol Chem; 2002 Feb; 277(6):4056-61. PubMed ID: 11729203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of S-adenosylmethionine levels in Saccharomyces cerevisiae.
    Chan SY; Appling DR
    J Biol Chem; 2003 Oct; 278(44):43051-9. PubMed ID: 12937179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation, characterization, and functional expression of cDNAs encoding NADH-dependent methylenetetrahydrofolate reductase from higher plants.
    Roje S; Wang H; McNeil SD; Raymond RK; Appling DR; Shachar-Hill Y; Bohnert HJ; Hanson AD
    J Biol Chem; 1999 Dec; 274(51):36089-96. PubMed ID: 10593891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccharomyces cerevisiae expresses two genes encoding isozymes of methylenetetrahydrofolate reductase.
    Raymond RK; Kastanos EK; Appling DR
    Arch Biochem Biophys; 1999 Dec; 372(2):300-8. PubMed ID: 10600168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of human methylenetetrahydrofolate reductase in Saccharomyces cerevisiae.
    Shan X; Wang L; Hoffmaster R; Kruger WD
    J Biol Chem; 1999 Nov; 274(46):32613-8. PubMed ID: 10551815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of human methylenetetrahydrofolate reductase by phosphorylation.
    Yamada K; Strahler JR; Andrews PC; Matthews RG
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10454-9. PubMed ID: 16024724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia.
    Guenther BD; Sheppard CA; Tran P; Rozen R; Matthews RG; Ludwig ML
    Nat Struct Biol; 1999 Apr; 6(4):359-65. PubMed ID: 10201405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of small molecule allosteric modulators of 5,10-methylenetetrahydrofolate reductase (MTHFR) by targeting its unique regulatory domain.
    Bezerra GA; Holenstein A; Foster WR; Xie B; Hicks KG; Bürer C; Lutz S; Mukherjee A; Sarkar D; Bhattacharya D; Rutter J; Talukdar A; Brown PJ; Luo M; Shi L; Froese DS; Yue WW
    Biochimie; 2021 Apr; 183():100-107. PubMed ID: 33476699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Folate-Mediated One-Carbon Metabolism by Glycine N-Methyltransferase (GNMT) and Methylenetetrahydrofolate Reductase (MTHFR).
    Wang YC; Wu MT; Lin YJ; Tang FY; Ko HA; Chiang EP
    J Nutr Sci Vitaminol (Tokyo); 2015; 61 Suppl():S148-50. PubMed ID: 26598833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric inhibition of methylenetetrahydrofolate reductase by adenosylmethionine. Effects of adenosylmethionine and NADPH on the equilibrium between active and inactive forms of the enzyme and on the kinetics of approach to equilibrium.
    Jencks DA; Mathews RG
    J Biol Chem; 1987 Feb; 262(6):2485-93. PubMed ID: 3818603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monomeric NADH-Oxidizing Methylenetetrahydrofolate Reductases from Mycobacterium smegmatis Lack Flavin Coenzyme.
    Sah S; Lahry K; Talwar C; Singh S; Varshney U
    J Bacteriol; 2020 May; 202(12):. PubMed ID: 32253341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic carbamazepine treatment and folate-dependent one-carbon metabolism.
    Carl GF
    Res Commun Chem Pathol Pharmacol; 1990 Sep; 69(3):357-60. PubMed ID: 2236902
    [No Abstract]   [Full Text] [Related]  

  • 13. Biochemical and genetic analysis of methylenetetrahydrofolate reductase in Leishmania metabolism and virulence.
    Vickers TJ; Orsomando G; de la Garza RD; Scott DA; Kang SO; Hanson AD; Beverley SM
    J Biol Chem; 2006 Dec; 281(50):38150-8. PubMed ID: 17032644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and functional expression of cDNAs encoding methionine-sensitive and -insensitive homocysteine S-methyltransferases from Arabidopsis.
    Ranocha P; Bourgis F; Ziemak MJ; Rhodes D; Gage DA; Hanson AD
    J Biol Chem; 2000 May; 275(21):15962-8. PubMed ID: 10747987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allosteric inhibition of MTHFR prevents futile SAM cycling and maintains nucleotide pools in one-carbon metabolism.
    Bhatia M; Thakur J; Suyal S; Oniel R; Chakraborty R; Pradhan S; Sharma M; Sengupta S; Laxman S; Masakapalli SK; Bachhawat AK
    J Biol Chem; 2020 Nov; 295(47):16037-16057. PubMed ID: 32934008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered folate metabolism and disposition in mothers affected by a spina bifida pregnancy: influence of 677c --> t methylenetetrahydrofolate reductase and 2756a --> g methionine synthase genotypes.
    Lucock M; Daskalakis I; Briggs D; Yates Z; Levene M
    Mol Genet Metab; 2000 May; 70(1):27-44. PubMed ID: 10833329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR).
    Goyette P; Pai A; Milos R; Frosst P; Tran P; Chen Z; Chan M; Rozen R
    Mamm Genome; 1998 Aug; 9(8):652-6. PubMed ID: 9680386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylenetetrahydrofolate reductase: a common human polymorphism and its biochemical implications.
    Matthews RG
    Chem Rec; 2002; 2(1):4-12. PubMed ID: 11933257
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Wang YC; Wu MT; Tang FY; Chen DY; Ko HA; Shane B; Huang WN; Chiang EP
    Clin Sci (Lond); 2019 Jan; 133(2):253-267. PubMed ID: 30606816
    [No Abstract]   [Full Text] [Related]  

  • 20. Folate restriction and methylenetetrahydrofolate reductase 677T polymorphism decreases adoMet synthesis via folate-dependent remethylation in human-transformed lymphoblasts.
    Chiang EP; Wang YC; Tang FY
    Leukemia; 2007 Apr; 21(4):651-8. PubMed ID: 17301815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.