These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11729871)

  • 1. Models of neuronal bursting behavior: implications for in-vivo versus in-vitro respiratory rhythmogenesis.
    Rybak IA; St John WM; Paton JF
    Adv Exp Med Biol; 2001; 499():159-64. PubMed ID: 11729871
    [No Abstract]   [Full Text] [Related]  

  • 2. Modeling neural mechanisms for genesis of respiratory rhythm and pattern. I. Models of respiratory neurons.
    Rybak IA; Paton JF; Schwaber JS
    J Neurophysiol; 1997 Apr; 77(4):1994-2006. PubMed ID: 9114250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons.
    Butera RJ; Rinzel J; Smith JC
    J Neurophysiol; 1999 Jul; 82(1):382-97. PubMed ID: 10400966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unstable breathing rhythms and quasiperiodicity in the pre-Bötzinger complex.
    Del Negro CA; Wilson CG; Butera RJ; Koshiya N; Johnson SM; Smith JC
    Adv Exp Med Biol; 2001; 499():133-8. PubMed ID: 11729867
    [No Abstract]   [Full Text] [Related]  

  • 5. PreBötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation.
    Rekling JC; Feldman JL
    Annu Rev Physiol; 1998; 60():385-405. PubMed ID: 9558470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling neural mechanisms for genesis of respiratory rhythm and pattern. II. Network models of the central respiratory pattern generator.
    Rybak IA; Paton JF; Schwaber JS
    J Neurophysiol; 1997 Apr; 77(4):2007-26. PubMed ID: 9114251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations Of coupled pacemaker neurons.
    Butera RJ; Rinzel J; Smith JC
    J Neurophysiol; 1999 Jul; 82(1):398-415. PubMed ID: 10400967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat.
    Johnson SM; Smith JC; Funk GD; Feldman JL
    J Neurophysiol; 1994 Dec; 72(6):2598-608. PubMed ID: 7897477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How is the respiratory central pattern generator configured and reconfigured? A workshop summary.
    Lindsey BG
    Adv Exp Med Biol; 2001; 499():179-84. PubMed ID: 11729875
    [No Abstract]   [Full Text] [Related]  

  • 10. Model of nonassociative learning in vagal-pontine modulation of the respiratory rhythm.
    Young DL; Siniaia MS; Poon CS
    Adv Exp Med Biol; 2001; 499():255-60. PubMed ID: 11729887
    [No Abstract]   [Full Text] [Related]  

  • 11. Introduction of respiratory pattern generators into models of respiratory control.
    Longobardo G; Evangelisti CJ; Cherniack NS
    Respir Physiol Neurobiol; 2005 Oct; 148(3):285-301. PubMed ID: 16143285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model.
    Smith JC; Butera RJ; Koshiya N; Del Negro C; Wilson CG; Johnson SM
    Respir Physiol; 2000 Sep; 122(2-3):131-47. PubMed ID: 10967340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How to synchronize biological clocks.
    Russo G; Di Bernardo M
    J Comput Biol; 2009 Feb; 16(2):379-93. PubMed ID: 19183005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal activity patterns during respiratory rhythmogenesis in the rat ventrolateral medulla.
    Fisher JA; Marchenko VA; Yodh AG; Rogers RF
    J Neurophysiol; 2006 Mar; 95(3):1982-91. PubMed ID: 16339002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistent sodium current, membrane properties and bursting behavior of pre-bötzinger complex inspiratory neurons in vitro.
    Del Negro CA; Koshiya N; Butera RJ; Smith JC
    J Neurophysiol; 2002 Nov; 88(5):2242-50. PubMed ID: 12424266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orchestrating time: arrangements of the brain circadian clock.
    Antle MC; Silver R
    Trends Neurosci; 2005 Mar; 28(3):145-51. PubMed ID: 15749168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Point: Medullary pacemaker neurons are essential for both eupnea and gasping in mammals.
    Ramirez JM; Garcia A
    J Appl Physiol (1985); 2007 Aug; 103(2):717-8; discussion 722. PubMed ID: 17272416
    [No Abstract]   [Full Text] [Related]  

  • 18. Counterpoint: Medullary pacemaker neurons are essential for gasping, but not eupnea, in mammals.
    Paton JF; St-John WM
    J Appl Physiol (1985); 2007 Aug; 103(2):718-20; discussion 721-2. PubMed ID: 17666729
    [No Abstract]   [Full Text] [Related]  

  • 19. Short circuiting the circadian clock.
    van den Pol AN; Obrietan K
    Nat Neurosci; 2002 Jul; 5(7):616-8. PubMed ID: 12085090
    [No Abstract]   [Full Text] [Related]  

  • 20. Interfacing computer models with real neurons: respiratory "cyberneurons" created with the dynamic clamp.
    Wilson CG; Butera RJ; Del Negro CA; Rinzel J; Smith JC
    Adv Exp Med Biol; 2001; 499():119-24. PubMed ID: 11729865
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.