BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 11729954)

  • 1. The epicardium as a source of mesenchyme for the developing heart.
    Muñoz-Chápuli R; Pérez-Pomares JM; Macías D; García-Garrido L; Carmona R; González-Iriarte M
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):187-96. PubMed ID: 11729954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin of the subepicardial mesenchyme in the avian embryo: an immunohistochemical and quail-chick chimera study.
    Pérez-Pomares JM; Macías D; García-Garrido L; Muñoz-Chápuli R
    Dev Biol; 1998 Aug; 200(1):57-68. PubMed ID: 9698456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos.
    Pérez-Pomares JM; Macías D; García-Garrido L; Muñoz-Chápuli R
    Dev Dyn; 1997 Oct; 210(2):96-105. PubMed ID: 9337131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart.
    Dettman RW; Denetclaw W; Ordahl CP; Bristow J
    Dev Biol; 1998 Jan; 193(2):169-81. PubMed ID: 9473322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium.
    Männer J
    Anat Rec; 1999 Jun; 255(2):212-26. PubMed ID: 10359522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunolocalization of the transcription factor Slug in the developing avian heart.
    Carmona R; González-Iriarte M; Macías D; Pérez-Pomares JM; García-Garrido L; Muñoz-Chápuli R
    Anat Embryol (Berl); 2000 Feb; 201(2):103-9. PubMed ID: 10672362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs).
    Pérez-Pomares JM; Phelps A; Sedmerova M; Carmona R; González-Iriarte M; Muñoz-Chápuli R; Wessels A
    Dev Biol; 2002 Jul; 247(2):307-26. PubMed ID: 12086469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells.
    Guadix JA; Carmona R; Muñoz-Chápuli R; Pérez-Pomares JM
    Dev Dyn; 2006 Apr; 235(4):1014-26. PubMed ID: 16456846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunoreactivity of the ets-1 transcription factor correlates with areas of epithelial-mesenchymal transition in the developing avian heart.
    Macías D; Pérez-Pomares JM; García-Garrido L; Carmona R; Muñoz-Chápuli R
    Anat Embryol (Berl); 1998 Oct; 198(4):307-15. PubMed ID: 9764544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac endothelial heterogeneity defines valvular development as demonstrated by the diverse expression of JB3, an antigen of the endocardial cushion tissue.
    Wunsch AM; Little CD; Markwald RR
    Dev Biol; 1994 Oct; 165(2):585-601. PubMed ID: 7958424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development.
    Morabito CJ; Dettman RW; Kattan J; Collier JM; Bristow J
    Dev Biol; 2001 Jun; 234(1):204-15. PubMed ID: 11356030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development.
    Poelmann RE; Lie-Venema H; Gittenberger-de Groot AC
    Tex Heart Inst J; 2002; 29(4):255-61. PubMed ID: 12484609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos.
    Pérez-Pomares JM; Carmona R; González-Iriarte M; Atencia G; Wessels A; Muñoz-Chápuli R
    Int J Dev Biol; 2002 Dec; 46(8):1005-13. PubMed ID: 12533024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slug is a mediator of epithelial-mesenchymal cell transformation in the developing chicken heart.
    Romano LA; Runyan RB
    Dev Biol; 1999 Aug; 212(1):243-54. PubMed ID: 10419699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions.
    Gittenberger-de Groot AC; Vrancken Peeters MP; Mentink MM; Gourdie RG; Poelmann RE
    Circ Res; 1998 Jun; 82(10):1043-52. PubMed ID: 9622157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart.
    Braitsch CM; Combs MD; Quaggin SE; Yutzey KE
    Dev Biol; 2012 Aug; 368(2):345-57. PubMed ID: 22687751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signaling via the Tgf-beta type I receptor Alk5 in heart development.
    Sridurongrit S; Larsson J; Schwartz R; Ruiz-Lozano P; Kaartinen V
    Dev Biol; 2008 Oct; 322(1):208-18. PubMed ID: 18718461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slug is an essential target of TGFbeta2 signaling in the developing chicken heart.
    Romano LA; Runyan RB
    Dev Biol; 2000 Jul; 223(1):91-102. PubMed ID: 10864463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium.
    Vrancken Peeters MP; Gittenberger-de Groot AC; Mentink MM; Poelmann RE
    Anat Embryol (Berl); 1999 Apr; 199(4):367-78. PubMed ID: 10195310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of alpha4-integrin stimulates epicardial-mesenchymal transformation and alters migration and cell fate of epicardially derived mesenchyme.
    Dettman RW; Pae SH; Morabito C; Bristow J
    Dev Biol; 2003 May; 257(2):315-28. PubMed ID: 12729561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.