BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 11730098)

  • 1. Computational modeling of ligament mechanics.
    Weiss JA; Gardiner JC
    Crit Rev Biomed Eng; 2001; 29(3):303-71. PubMed ID: 11730098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modeling of ligaments and tendons.
    Woo SL; Johnson GA; Smith BA
    J Biomech Eng; 1993 Nov; 115(4B):468-73. PubMed ID: 8302027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single integral finite strain viscoelastic model of ligaments and tendons.
    Johnson GA; Livesay GA; Woo SL; Rajagopal KR
    J Biomech Eng; 1996 May; 118(2):221-6. PubMed ID: 8738788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional finite element modeling of ligaments: technical aspects.
    Weiss JA; Gardiner JC; Ellis BJ; Lujan TJ; Phatak NS
    Med Eng Phys; 2005 Dec; 27(10):845-61. PubMed ID: 16085446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuum description of the Poisson's ratio of ligament and tendon under finite deformation.
    Swedberg AM; Reese SP; Maas SA; Ellis BJ; Weiss JA
    J Biomech; 2014 Sep; 47(12):3201-9. PubMed ID: 25134434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation.
    Puso MA; Weiss JA
    J Biomech Eng; 1998 Feb; 120(1):62-70. PubMed ID: 9675682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity analysis for the mechanics of tendons and ligaments: Investigation on the effects of collagen structural properties via a multiscale modeling approach.
    Hamdia KM; Marino M; Zhuang X; Wriggers P; Rabczuk T
    Int J Numer Method Biomed Eng; 2019 Aug; 35(8):e3209. PubMed ID: 30989796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite viscoelastic-plastic model for describing the uniaxial ratchetting of soft biological tissues.
    Zhu Y; Kang G; Kan Q; Yu C
    J Biomech; 2014 Mar; 47(5):996-1003. PubMed ID: 24462380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical model of the foot: the role of muscles, tendons, and ligaments.
    Salathe EP; Arangio GA
    J Biomech Eng; 2002 Jun; 124(3):281-7. PubMed ID: 12071262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structurally based stress-stretch relationship for tendon and ligament.
    Hurschler C; Loitz-Ramage B; Vanderby R
    J Biomech Eng; 1997 Nov; 119(4):392-9. PubMed ID: 9407276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A geometric theory of the equilibrium mechanics of fibers in ligaments and tendons.
    Sidles JA; Clark JM; Garbini JL
    J Biomech; 1991; 24(10):943-9. PubMed ID: 1744151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model.
    Defrate LE; Li G
    Biomech Model Mechanobiol; 2007 Jul; 6(4):245-51. PubMed ID: 16941137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nonlinear constitutive model for stress relaxation in ligaments and tendons.
    Davis FM; De Vita R
    Ann Biomed Eng; 2012 Dec; 40(12):2541-50. PubMed ID: 22648576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review of Finite Element Models of Ligaments in the Foot and Considerations for Practical Application.
    Zhu J; Forman J
    J Biomech Eng; 2022 Aug; 144(8):. PubMed ID: 35079785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite dissipative theory of temporary interfibrillar bridges in the extracellular matrix of ligaments and tendons.
    Ciarletta P; Ben Amar M
    J R Soc Interface; 2009 Oct; 6(39):909-24. PubMed ID: 19106068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A finite element evaluation of mechanical function for 3 distal extension partial dental prosthesis designs with a 3-dimensional nonlinear method for modeling soft tissue.
    Nakamura Y; Kanbara R; Ochiai KT; Tanaka Y
    J Prosthet Dent; 2014 Oct; 112(4):972-80. PubMed ID: 24819523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions.
    Phillips AT; Pankaj P; Howie CR; Usmani AS; Simpson AH
    Med Eng Phys; 2007 Sep; 29(7):739-48. PubMed ID: 17035063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for loading-dependent growth, development, and adaptation of tendons and ligaments.
    Wren TA; Beaupré GS; Carter DR
    J Biomech; 1998 Feb; 31(2):107-14. PubMed ID: 9593203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle-driven finite element simulation of human foot movements.
    Spyrou LA; Aravas N
    Comput Methods Biomech Biomed Engin; 2012; 15(9):925-34. PubMed ID: 21711216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A continuous method to compute model parameters for soft biological materials.
    Tanaka ML; Weisenbach CA; Carl Miller M; Kuxhaus L
    J Biomech Eng; 2011 Jul; 133(7):074502. PubMed ID: 21823751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.