These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11730101)

  • 1. Numerical simulation of light propagation and scattering in turbid biological media.
    Lopatin VV; Pnezzhev AV; Fedoseev VV
    Crit Rev Biomed Eng; 2001; 29(3):400-19. PubMed ID: 11730101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Simulation of Light Propagation and Scattering in Turbid Biological Media.
    Lopatin VV; Priezzhev AV; Fedoseev VV
    Crit Rev Biomed Eng; 2017; 45(1-6):99-118. PubMed ID: 29953375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of scattering phase function utilizing laser Doppler power density spectra.
    Wojtkiewicz S; Liebert A; Rix H; Sawosz P; Maniewski R
    Phys Med Biol; 2013 Feb; 58(4):937-55. PubMed ID: 23340453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doppler Monte Carlo simulations of light scattering in tissue to support laser-Doppler perfusion measurements.
    de Mul FF; Steenbergen W; Greve J
    Technol Health Care; 1999; 7(2-3):171-83. PubMed ID: 10463306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.
    Sakota D; Takatani S
    J Biomed Opt; 2012 May; 17(5):057007. PubMed ID: 22612146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study.
    Liebert A; Zołek N; Maniewski R
    Phys Med Biol; 2006 Nov; 51(22):5737-51. PubMed ID: 17068362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation.
    Yurkin MA; Semyanov KA; Tarasov PA; Chernyshev AV; Hoekstra AG; Maltsev VP
    Appl Opt; 2005 Sep; 44(25):5249-56. PubMed ID: 16149348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of light source-detector spacing on shape of probability density functions of scattering angles in laser Doppler flowmetry.
    Binzoni T; Martelli F
    Appl Opt; 2014 Jul; 53(20):4580-4. PubMed ID: 25090080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple and dependent scattering effects in Doppler optical coherence tomography.
    Kalkman J; Bykov AV; Faber DJ; van Leeuwen TG
    Opt Express; 2010 Feb; 18(4):3883-92. PubMed ID: 20389399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random numbers free analytical implementation of Monte Carlo for laser-Doppler flowmetry at large interoptode spacing: application to human bone tissue.
    Binzoni T; Martelli F
    Appl Opt; 2015 Mar; 54(9):2400-6. PubMed ID: 25968528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser Doppler perfusion imaging by dynamic light scattering.
    Wårdell K; Jakobsson A; Nilsson GE
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):309-16. PubMed ID: 8375866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Choroidal laser Doppler flowmeter with enhanced sensitivity based on a scattering plate.
    Wang C; Ding Z; Geiser M; Wu T; Chen M
    J Biomed Opt; 2011 Apr; 16(4):047004. PubMed ID: 21529094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement depth and volume in laser Doppler flowmetry.
    Fredriksson I; Larsson M; Strömberg T
    Microvasc Res; 2009 Jun; 78(1):4-13. PubMed ID: 19285089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation of polarized light in birefringent turbid media: a Monte Carlo study.
    Wang X; Wang LV
    J Biomed Opt; 2002 Jul; 7(3):279-90. PubMed ID: 12175276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media.
    Wang L; Jacques SL
    J Opt Soc Am A Opt Image Sci Vis; 1993 Aug; 10(8):1746-52. PubMed ID: 8350159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of speed distribution of particles moving in an optically turbid medium using decomposition of a laser-Doppler spectrum.
    Liebert A; Zołek N; Wojtkiewicz S; Maniewski R
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4080-2. PubMed ID: 18002896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium.
    Wojtkiewicz S; Liebert A; Rix H; Zołek N; Maniewski R
    Phys Med Biol; 2009 Feb; 54(3):679-97. PubMed ID: 19131674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo modeling of optical coherence tomography imaging through turbid media.
    Lu Q; Gan X; Gu M; Luo Q
    Appl Opt; 2004 Mar; 43(8):1628-37. PubMed ID: 15046164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.
    Hart VP; Doyle TE
    Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media.
    Wood MF; Côté D; Vitkin IA
    J Biomed Opt; 2008; 13(4):044037. PubMed ID: 19021364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.