These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 11730134)

  • 21. The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01.
    Wang Y; Wu C; Wang X; Zhou S
    J Hazard Mater; 2009 May; 164(2-3):941-7. PubMed ID: 18849114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining the biological nitrogen and sulfur cycles in anaerobic conditions.
    Fdz-Polanco F; Fdz-Polanco M; Fernández N; Urueña ; Garciá PA; Villaverde S
    Water Sci Technol; 2001; 44(8):77-84. PubMed ID: 11730140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of nanofiltration and biological degradation of textile wastewater containing azo dye.
    Paździor K; Klepacz-Smółka A; Ledakowicz S; Sójka-Ledakowicz J; Mrozińska Z; Zyłła R
    Chemosphere; 2009 Apr; 75(2):250-5. PubMed ID: 19155044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The new incorporation bio-treatment technology of bromoamine acid and azo dyes wastewaters under high-salt conditions.
    Guo J; Zhou J; Wang D; Yang J; Li Z
    Biodegradation; 2008 Feb; 19(1):93-8. PubMed ID: 17534727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New developments in reactor and process technology for sulfate reduction.
    Pol LW; Lens PN; Weijma J; Stams AJ
    Water Sci Technol; 2001; 44(8):67-76. PubMed ID: 11730138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conceptual comparison of pink water treatment technologies: granular activated carbon, anaerobic fluidized bed, and zero-valent iron-Fenton process.
    Oh SY; Cha DK; Chiu PC; Kim BJ
    Water Sci Technol; 2004; 49(5-6):129-36. PubMed ID: 15137416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling the degradation of low concentration pollutants in membrane bioreactors.
    Peev M; Schönerklee M; De Wever H
    Water Sci Technol; 2004; 50(5):209-18. PubMed ID: 15497850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated catalytic wet air oxidation and aerobic biological treatment in a municipal WWTP of a high-strength o-cresol wastewater.
    Suarez-Ojeda ME; Guisasola A; Baeza JA; Fabregat A; Stüber F; Fortuny A; Font J; Carrera J
    Chemosphere; 2007 Feb; 66(11):2096-105. PubMed ID: 17095041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of the apparent rate constants of the degradation of humic substances by ozonation and modeling of the removal of humic substances from the aqueous solutions with neural network.
    Oguz E; Tortum A; Keskinler B
    J Hazard Mater; 2008 Sep; 157(2-3):455-63. PubMed ID: 18289778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sludge pre-treatment with pulsed electric fields.
    Kopplow O; Barjenbruch M; Heinz V
    Water Sci Technol; 2004; 49(10):123-9. PubMed ID: 15259946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined biological and physico-chemical treatment of baker's yeast wastewater including removal of coloured and recalcitrant to biodegradation pollutants.
    Gladchenko M; Starostina E; Shcherbakov S; Versprille B; Kalyuzhnyi S
    Water Sci Technol; 2004; 50(5):67-72. PubMed ID: 15497831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anaerobic bioprocessing of sewage sludge, focusing on degradation of linear alkylbenzene sulfonates (LAS).
    Angelidaki I; Toräng L; Waul CM; Schmidt JE
    Water Sci Technol; 2004; 49(10):115-22. PubMed ID: 15259945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodegradation of high molecular weight lignin under sulfate reducing conditions: lignin degradability and degradation by-products.
    Ko JJ; Shimizu Y; Ikeda K; Kim SK; Park CH; Matsui S
    Bioresour Technol; 2009 Feb; 100(4):1622-7. PubMed ID: 18977138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Humus-reducing microorganisms and their valuable contribution in environmental processes.
    Martinez CM; Alvarez LH; Celis LB; Cervantes FJ
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10293-308. PubMed ID: 24220793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermophilic treatment by anaerobic granular sludge as an effective approach to accelerate the electron transfer and improve the reductive decolorization of azo dyes in bioreactors.
    dos Santos AB; Traverse J; Cervantes FJ; van Lier JB
    Water Sci Technol; 2005; 52(1-2):363-9. PubMed ID: 16180451
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and quantification of nitrogen removal in a rotating biological contactor by 15N tracer techniques.
    Wyffels S; Pynaert K; Boeckx P; Verstraete W; Van Cleemput O
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(4):161-6. PubMed ID: 15954283
    [No Abstract]   [Full Text] [Related]  

  • 37. Degradation of lignocellulosic materials under sulfidogenic and methanogenic conditions.
    Kim SK; Lee T
    Waste Manag; 2009 Jan; 29(1):224-7. PubMed ID: 18407485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification.
    Kleerebezem R; Mendez R
    Water Sci Technol; 2002; 45(10):349-56. PubMed ID: 12188569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic treatment of 2,4,6-trichlorophenol in an expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactor at 15 degrees C.
    Collins G; Foy C; McHugh S; O'Flaherty V
    FEMS Microbiol Ecol; 2005 Jun; 53(1):167-78. PubMed ID: 16329938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge.
    van der Zee FP; Bisschops IA; Blanchard VG; Bouwman RH; Lettinga G; Field JA
    Water Res; 2003 Jul; 37(13):3098-109. PubMed ID: 14509696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.