These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11730213)

  • 21. Is the air handling capability of the quadrox D pump dependent within an ECMO circuit? An in vitro study.
    Gill MC; Dando H; John D
    J Extra Corpor Technol; 2010 Sep; 42(3):203-11. PubMed ID: 21114223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laboratory evaluation of a low prime closed-circuit cardiopulmonary bypass system.
    Sistino JJ; Michler RE; Mongero LB
    J Extra Corpor Technol; 1993; 24(4):116-9. PubMed ID: 10148323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters.
    Liu S; Newland RF; Tully PJ; Tuble SC; Baker RA
    J Extra Corpor Technol; 2011 Sep; 43(3):107-14. PubMed ID: 22164448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vacuum-assisted venous drainage: to air or not to air, that is the question. Has the bubble burst?
    Willcox TW
    J Extra Corpor Technol; 2002 Mar; 34(1):24-8. PubMed ID: 11911625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Vitro Evaluation of Pediatric Hollow-Fiber Membrane Oxygenators on Hemodynamic Performance and Gaseous Microemboli Handling: An International Multicenter/Multidisciplinary Approach.
    Wang S; Caneo LF; Jatene MB; Jatene FB; Cestari IA; Kunselman AR; Ündar A
    Artif Organs; 2017 Sep; 41(9):865-874. PubMed ID: 28597590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clinical evaluation of the air removal characteristics of an oxygenator with integrated arterial filter in a minimized extracorporeal circuit.
    Stehouwer MC; Boers C; de Vroege R; C Kelder J; Yilmaz A; Bruins P
    Int J Artif Organs; 2011 Apr; 34(4):374-82. PubMed ID: 21534248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the Quadrox-I neonatal oxygenator with an integrated arterial filter.
    Salavitabar A; Qiu F; Kunselman A; Ündar A
    Perfusion; 2010 Nov; 25(6):409-15. PubMed ID: 20699287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prebypass filtration of cardiopulmonary bypass circuits: an outdated technique?
    Merkle F; Böttcher W; Hetzer R
    Perfusion; 2003 Mar; 18 Suppl 1():81-8. PubMed ID: 12708770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Venous air in the bypass circuit: a source of arterial line emboli exacerbated by vacuum-assisted drainage.
    Willcox TW; Mitchell SJ; Gorman DF
    Ann Thorac Surg; 1999 Oct; 68(4):1285-9. PubMed ID: 10543494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of Vacuum-Assisted Venous Drainage on Forward Flow in Simulated Pediatric Cardiopulmonary Bypass Circuits Utilizing a Centrifugal Arterial Pump Head.
    Guimarães DP; Caneo LF; Matte G; Carletto LP; Policarpo VC; Castro AVCX; Miranda MHC; Costa PS; Jatene MB; Cestari I; Jatene FB
    Braz J Cardiovasc Surg; 2020 Apr; 35(2):134-140. PubMed ID: 32369291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new bladder allows kinetic venous augmentation with a roller pump.
    Tamari Y; Lee-Sensiba K; Ganju R; Chan R; Hall MH
    Perfusion; 1999 Nov; 14(6):453-9. PubMed ID: 10585153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ex vivo testing of the Quart arterial line filter.
    Mueller XM; Tevaearai HT; Jegger D; Augstburger M; Burki M; von Segesser LK
    Perfusion; 1999 Nov; 14(6):481-7. PubMed ID: 10585156
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit.
    Wang S; Kunselman AR; Ündar A
    Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of Capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line.
    Qiu F; Peng S; Kunselman A; Ündar A
    Artif Organs; 2010 Nov; 34(11):1053-7. PubMed ID: 21137158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated Oxygenator FX05.
    Horton SB; Donath S; Thuys CA; Bennett MJ; Augustin SL; Horton AM; Schultz BJ; Bottrell SJ; Konstantinov I; d'Udekem Y; Brizard C
    ASAIO J; 2011; 57(6):522-6. PubMed ID: 21970981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blood temperature management and gaseous microemboli creation: an in-vitro analysis.
    Sleep J; Syhre I; Evans E
    J Extra Corpor Technol; 2010 Sep; 42(3):219-22. PubMed ID: 21114225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An ultrasonic analysis of the comparative efficiency of various cardiotomy reservoirs and micropore blood filters.
    Pearson DT; Watson BG; Waterhouse PS
    Thorax; 1978 Jun; 33(3):352-8. PubMed ID: 684672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical performance comparison between RotaFlow and CentriMag centrifugal blood pumps in an adult ECLS model.
    Yulong Guan ; Xiaowei Su ; McCoach R; Kunselman A; El-Banayosy A; Undar A
    Perfusion; 2010 Mar; 25(2):71-6. PubMed ID: 20212070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Vitro Comparison of Pediatric Oxygenators With and Without Integrated Arterial Filters in Maintaining Optimal Hemodynamic Stability and Managing Gaseous Microemboli.
    Moroi M; Force M; Wang S; Kunselman AR; Ündar A
    Artif Organs; 2018 Apr; 42(4):420-431. PubMed ID: 29377185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Significant safety advantages gained with an improved pressure-regulated blood pump.
    Montoya JP; Merz SI; Bartlett RH
    J Extra Corpor Technol; 1996 Jun; 28(2):71-8. PubMed ID: 10160447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.