These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 11730355)

  • 1. Calsequestrin blot overlay of two-dimensional electrophoretically separated microsomal proteins from skeletal muscle.
    Glover L; Froemming G; Ohlendieck K
    Anal Biochem; 2001 Dec; 299(2):268-71. PubMed ID: 11730355
    [No Abstract]   [Full Text] [Related]  

  • 2. Oligomerization is an intrinsic property of calsequestrin in normal and transformed skeletal muscle.
    Maguire PB; Briggs FN; Lennon NJ; Ohlendieck K
    Biochem Biophys Res Commun; 1997 Nov; 240(3):721-7. PubMed ID: 9398633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calsequestrin binds to monomeric and complexed forms of key calcium-handling proteins in native sarcoplasmic reticulum membranes from rabbit skeletal muscle.
    Glover L; Culligan K; Cala S; Mulvey C; Ohlendieck K
    Biochim Biophys Acta; 2001 Dec; 1515(2):120-32. PubMed ID: 11718668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HRC (histidine-rich Ca2+ binding protein) resides in the lumen of sarcoplasmic reticulum as a multimer.
    Suk JY; Kim YS; Park WJ
    Biochem Biophys Res Commun; 1999 Oct; 263(3):667-71. PubMed ID: 10512736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of continuous-elution gel electrophoresis as a preparative tool for blot overlay analysis.
    Mulvey C; Ohlendieck K
    Anal Biochem; 2003 Aug; 319(1):122-30. PubMed ID: 12842115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calsequestrin expression and calcium binding is increased in streptozotocin-induced diabetic rat skeletal muscle though not in cardiac muscle.
    Howarth FC; Glover L; Culligan K; Qureshi MA; Ohlendieck K
    Pflugers Arch; 2002 May; 444(1-2):52-8. PubMed ID: 11976916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligomerisation of calsequestrin from rabbit skeletal muscle.
    Maguire PB; Lennon NJ; Ohlendieck K
    Biochem Soc Trans; 1998 Aug; 26(3):S292. PubMed ID: 9766011
    [No Abstract]   [Full Text] [Related]  

  • 8. Crystallization and structure-function of calsequestrin.
    Kang C; Trumble WR; Dunker AK
    Methods Mol Biol; 2002; 172():281-94. PubMed ID: 11833354
    [No Abstract]   [Full Text] [Related]  

  • 9. Oligomerisation of sarcoplasmic reticulum Ca2+-ATPase monomers from skeletal muscle.
    Schreiber D; Ohlendieck K
    Protein Pept Lett; 2007; 14(3):219-26. PubMed ID: 17346224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.
    Beard NA; Wei L; Dulhunty AF
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):340-5. PubMed ID: 19278523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of drugs with muscle-related side effects and affinity for calsequestrin on the calcium regulatory function of sarcoplasmic reticulum microsomes.
    Kim E; Tam M; Siems WF; Kang C
    Mol Pharmacol; 2005 Dec; 68(6):1708-15. PubMed ID: 16141311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic study of muscle sarcoplasmic proteins using AUT-PAGE/SDS-PAGE as two-dimensional gel electrophoresis.
    Picariello G; De Martino A; Mamone G; Ferranti P; Addeo F; Faccia M; Spagnamusso S; Di Luccia A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Mar; 833(1):101-8. PubMed ID: 16503425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum.
    Wang S; Trumble WR; Liao H; Wesson CR; Dunker AK; Kang CH
    Nat Struct Biol; 1998 Jun; 5(6):476-83. PubMed ID: 9628486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of membrane proteins.
    Ohlendieck K
    Methods Mol Biol; 1996; 59():293-304. PubMed ID: 8798208
    [No Abstract]   [Full Text] [Related]  

  • 16. Native skeletal muscle dihydropyridine receptor exists as a supramolecular triad complex.
    Froemming GR; Ohlendieck K
    Cell Mol Life Sci; 2001 Feb; 58(2):312-20. PubMed ID: 11289313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-linking analysis of rabbit skeletal muscle dystrophin.
    Finn DM; Ohlendieck K
    Biochem Soc Trans; 1998 Aug; 26(3):S291. PubMed ID: 9766010
    [No Abstract]   [Full Text] [Related]  

  • 18. Tubular aggregates are from whole sarcoplasmic reticulum origin: alterations in calcium binding protein expression in mouse skeletal muscle during aging.
    Chevessier F; Marty I; Paturneau-Jouas M; Hantaï D; Verdière-Sahuqué M
    Neuromuscul Disord; 2004 Mar; 14(3):208-16. PubMed ID: 15036331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An effective skeletal muscle prefractionation method to remove abundant structural proteins for optimized two-dimensional gel electrophoresis.
    Jarrold B; DeMuth J; Greis K; Burt T; Wang F
    Electrophoresis; 2005 Jun; 26(11):2269-78. PubMed ID: 15880551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging skeletal muscle shows a drastic increase in the small heat shock proteins alphaB-crystallin/HspB5 and cvHsp/HspB7.
    Doran P; Gannon J; O'Connell K; Ohlendieck K
    Eur J Cell Biol; 2007 Oct; 86(10):629-40. PubMed ID: 17761354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.