BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 11730561)

  • 1. Development of quantitative structure activity relationships in toxicity prediction of complex mixtures.
    Yu HX; Lin ZF; Feng JF; Xu TL; Wang LS
    Acta Pharmacol Sin; 2001 Jan; 22(1):45-9. PubMed ID: 11730561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-based QSARs for predicting mixture toxicity of benzene and its derivatives.
    Zhang L; Zhou PJ; Yang F; Wang ZD
    Chemosphere; 2007 Feb; 67(2):396-401. PubMed ID: 17184822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of partition coefficients to predict mixture toxicity.
    Lin Z; Shi P; Gao S; Wang L; Yu H
    Water Res; 2003 May; 37(9):2223-7. PubMed ID: 12691908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSAR for predicting joint toxicity of halogenated benzenes to Dicrateria zhanjiangensis.
    Zeng M; Lin Z; Yin D; Yin K
    Bull Environ Contam Toxicol; 2008 Dec; 81(6):525-30. PubMed ID: 18854906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of joint effect for hydrogen bond and development of QSARs for predicting mixture toxicity.
    Lin Z; Zhong P; Yin K; Wang L; Yu H
    Chemosphere; 2003 Aug; 52(7):1199-208. PubMed ID: 12821001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A K(ow)-based QSAR model for predicting toxicity of halogenated benzenes to all algae regardless of species.
    Zeng M; Lin Z; Yin D; Zhang Y; Kong D
    Bull Environ Contam Toxicol; 2011 Jun; 86(6):565-70. PubMed ID: 21516454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute toxicity of benzene derivatives to the tadpoles (Rana japonica) and QSAR analyses.
    Huang H; Wang X; Ou W; Zhao J; Shao Y; Wang L
    Chemosphere; 2003 Dec; 53(8):963-70. PubMed ID: 14505719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-activity relationship for prediction of the toxicity of phenols on Photobacterium phosphoreum.
    Li X; Wang Z; Liu H; Yu H
    Bull Environ Contam Toxicol; 2012 Jul; 89(1):27-31. PubMed ID: 22562268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR-based toxicity classification and prediction for single and mixed aromatic compounds.
    Wei DB; Zhai LH; Hu HY
    SAR QSAR Environ Res; 2004 Jun; 15(3):207-16. PubMed ID: 15293547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint toxicity evaluation and QSAR modeling of aromatic amines and phenols to bacteria.
    Lu GH; Wang C; Wang PF; Chen ZY
    Bull Environ Contam Toxicol; 2009 Jul; 83(1):8-14. PubMed ID: 19308299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling acute and chronic toxicity of nonpolar narcotic chemicals and mixtures to Ceriodaphnia dubia.
    Niederlehner BR; Cairns J; Smith EP
    Ecotoxicol Environ Saf; 1998 Feb; 39(2):136-46. PubMed ID: 9515086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A case study of logistic QSAR modeling methods and robustness tests.
    Dongbin W; Aiqian Z; Zhongbo W; Shuokui H; Liansheng W
    Ecotoxicol Environ Saf; 2002 Jun; 52(2):143-9. PubMed ID: 12061832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of four QSAR models of aromatic compounds to aquatic organisms.
    Yu RL; Hu GR; Zhao YH
    J Environ Sci (China); 2002 Oct; 14(4):552-7. PubMed ID: 12491732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of mixture toxicity with its total hydrophobicity.
    Lin Z; Yu H; Wei D; Wang G; Feng J; Wang L
    Chemosphere; 2002 Jan; 46(2):305-10. PubMed ID: 11827289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobicity-dependent QSARs to predict the toxicity of perfluorinated carboxylic acids and their mixtures.
    Wang T; Lin Z; Yin D; Tian D; Zhang Y; Kong D
    Environ Toxicol Pharmacol; 2011 Sep; 32(2):259-65. PubMed ID: 21843807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM
    Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of acute toxicity of chemicals in mixtures: worms Tubifex tubifex and gas/liquid distribution.
    Tichý M; Borek-Dohalský V; Matousová D; Rucki M; Feltl L; Roth Z
    SAR QSAR Environ Res; 2002 Mar; 13(2):261-9. PubMed ID: 12071654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holographic quantitative structure-activity relationship for prediction acute toxicity of benzene derivatives to the guppy (Poecilia reticulata).
    Huang H; Wang XD; Dai XL; Yu YJ; Wang LS
    J Environ Sci (China); 2004; 16(3):423-7. PubMed ID: 15272716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of aquatic toxicity: use of optimization of correlation weights of local graph invariants.
    Toropov AA; Schultz TW
    J Chem Inf Comput Sci; 2003; 43(2):560-7. PubMed ID: 12653522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on prediction of the bio-toxicity of substituted benzene based on artificial neural network.
    Gao DW; Wang P; Liang H; Peng YZ
    J Environ Sci Health B; 2003 Sep; 38(5):571-9. PubMed ID: 12929716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.