These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11730859)

  • 1. Success and failure of biphasic shocks: results of bidomain simulations.
    Anderson C; Trayanova NA
    Math Biosci; 2001 Dec; 174(2):91-109. PubMed ID: 11730859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Termination of spiral waves with biphasic shocks: role of virtual electrode polarization.
    Anderson C; Trayanova N; Skouibine K
    J Cardiovasc Electrophysiol; 2000 Dec; 11(12):1386-96. PubMed ID: 11196563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure.
    Efimov IR; Cheng Y; Van Wagoner DR; Mazgalev T; Tchou PJ
    Circ Res; 1998 May; 82(8):918-25. PubMed ID: 9576111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simulation study of the reaction of human heart to biphasic electrical shocks.
    Popp LM; Seemann G; Dössel O
    BMC Cardiovasc Disord; 2004 Jun; 4():9. PubMed ID: 15212691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroporation in a model of cardiac defibrillation.
    Ashihara T; Yao T; Namba T; Ito M; Ikeda T; Kawase A; Toda S; Suzuki T; Inagaki M; Sugimachi M; Kinoshita M; Nakazawa K
    J Cardiovasc Electrophysiol; 2001 Dec; 12(12):1393-403. PubMed ID: 11797997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Success and failure of the defibrillation shock: insights from a simulation study.
    Skouibine K; Trayanova N; Moore P
    J Cardiovasc Electrophysiol; 2000 Jul; 11(7):785-96. PubMed ID: 10921796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation.
    Efimov IR; Cheng Y; Yamanouchi Y; Tchou PJ
    J Cardiovasc Electrophysiol; 2000 Aug; 11(8):861-8. PubMed ID: 10969748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of electrode polarity on internal defibrillation with monophasic and biphasic waveforms using an endocardial lead system.
    Huang J; KenKnight BH; Walcott GP; Walker RG; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1997 Feb; 8(2):161-71. PubMed ID: 9048247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortex cordis as a mechanism of postshock activation: arrhythmia induction study using a bidomain model.
    Ashihara T; Namba T; Yao T; Ozawa T; Kawase A; Ikeda T; Nakazawa K; Ito M
    J Cardiovasc Electrophysiol; 2003 Mar; 14(3):295-302. PubMed ID: 12716113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved efficacy of anodal biphasic defibrillation shocks following a failed defibrillation attempt.
    Roberts PR; Allen S; Smith DC; Urban JF; Euler DE; Kallok MJ; Morgan JM
    Pacing Clin Electrophysiol; 1999 Dec; 22(12):1753-9. PubMed ID: 10642128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase singularities and termination of spiral wave reentry.
    Eason J; Trayanova N
    J Cardiovasc Electrophysiol; 2002 Jul; 13(7):672-9. PubMed ID: 12139290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual electrode effects in defibrillation.
    Trayanova N; Skouibine K; Moore P
    Prog Biophys Mol Biol; 1998; 69(2-3):387-403. PubMed ID: 9785947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anode/cathode make and break phenomena in a model of defibrillation.
    Skouibine KB; Trayanova NA; Moore PK
    IEEE Trans Biomed Eng; 1999 Jul; 46(7):769-77. PubMed ID: 10396895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of polarity for monophasic and biphasic shocks on defibrillation efficacy with an endocardial system.
    Usui M; Walcott GP; Strickberger SA; Rollins DL; Smith WM; Ideker RE
    Pacing Clin Electrophysiol; 1996 Jan; 19(1):65-71. PubMed ID: 8848379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanisms of the vulnerable window: the role of virtual electrodes and shock polarity.
    Yamanouchi Y; Cheng Y; Tchou PJ; Efimov IR
    Can J Physiol Pharmacol; 2001 Jan; 79(1):25-33. PubMed ID: 11201498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac responses to premature monophasic and biphasic field stimuli. Results from cell and tissue modeling studies.
    Fishler MG; Sobie EA; Tung L; Thakor NV
    J Electrocardiol; 1995; 28 Suppl():174-9. PubMed ID: 8656107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling defibrillation: effects of fiber curvature.
    Trayanova N; Skouibine K
    J Electrocardiol; 1998; 31 Suppl():23-9. PubMed ID: 9988001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms.
    Maleckar MM; Woods MC; Sidorov VY; Holcomb MR; Mashburn DN; Wikswo JP; Trayanova NA
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1626-33. PubMed ID: 18708441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane refractoriness and excitation induced in cardiac fibers by monophasic and biphasic shocks.
    Trayanova N; Bray MA
    J Cardiovasc Electrophysiol; 1997 Jul; 8(7):745-57. PubMed ID: 9255682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual electrode polarization in the far field: implications for external defibrillation.
    Efimov IR; Aguel F; Cheng Y; Wollenzier B; Trayanova N
    Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1055-70. PubMed ID: 10993768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.