These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 11731053)

  • 21. Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators.
    Chopra R; Burtnyk M; Haider MA; Bronskill MJ
    Phys Med Biol; 2005 Nov; 50(21):4957-75. PubMed ID: 16237234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acoustical properties of selected tissue phantom materials for ultrasound imaging.
    Zell K; Sperl JI; Vogel MW; Niessner R; Haisch C
    Phys Med Biol; 2007 Oct; 52(20):N475-84. PubMed ID: 17921571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative observations of cavitation activity in a viscoelastic medium.
    Collin JR; Coussios CC
    J Acoust Soc Am; 2011 Nov; 130(5):3289-96. PubMed ID: 22088001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment.
    Holland CK; Apfel RE
    J Acoust Soc Am; 1990 Nov; 88(5):2059-69. PubMed ID: 2269722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic resonance imaging for the exploitation of bubble-enhanced heating by high-intensity focused ultrasound: a feasibility study in ex vivo liver.
    Elbes D; Denost Q; Robert B; Köhler MO; Tanter M; Bruno Q
    Ultrasound Med Biol; 2014 May; 40(5):956-64. PubMed ID: 24462160
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of acoustic streaming on ultrasonic heating.
    Wu J; Winkler AJ; O'Neill TP
    Ultrasound Med Biol; 1994; 20(2):195-201. PubMed ID: 8023432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of the acoustic properties of common tissue-mimicking test phantoms.
    Browne JE; Ramnarine KV; Watson AJ; Hoskins PR
    Ultrasound Med Biol; 2003 Jul; 29(7):1053-60. PubMed ID: 12878252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preclinical evaluation of a low-frequency transcranial MRI-guided focused ultrasound system in a primate model.
    McDannold N; Livingstone M; Top CB; Sutton J; Todd N; Vykhodtseva N
    Phys Med Biol; 2016 Nov; 61(21):7664-7687. PubMed ID: 27740941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrasound heating in a tissue-bone phantom.
    O'Neill TP; Winkler AJ; Wu J
    Ultrasound Med Biol; 1994; 20(6):579-88. PubMed ID: 7998378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The threshold for thermally significant cavitation in dog's thigh muscle in vivo.
    Hynynen K
    Ultrasound Med Biol; 1991; 17(2):157-69. PubMed ID: 2053212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bubble dynamics and size distributions during focused ultrasound insonation.
    Yang X; Roy RA; Holt RG
    J Acoust Soc Am; 2004 Dec; 116(6):3423-31. PubMed ID: 15658693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimates for the acoustical stimulation and heating of multiphase biotissue.
    Zohdi TI; Krone R
    Biomech Model Mechanobiol; 2018 Jun; 17(3):717-725. PubMed ID: 29168072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Curvilinear transurethral ultrasound applicator for selective prostate thermal therapy.
    Ross AB; Diederich CJ; Nau WH; Rieke V; Butts RK; Sommer G; Gill H; Bouley DM
    Med Phys; 2005 Jun; 32(6):1555-65. PubMed ID: 16013714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal effects generated by high-intensity focused ultrasound beams at normal incidence to a bone surface.
    Nell DM; Myers MR
    J Acoust Soc Am; 2010 Jan; 127(1):549-59. PubMed ID: 20059000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.
    Karwat P; Kujawska T; Lewin PA; Secomski W; Gambin B; Litniewski J
    Ultrasonics; 2016 Feb; 65():211-9. PubMed ID: 26498063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental studies of the thermal effects associated with radiation force imaging of soft tissue.
    Palmeri ML; Frinkley KD; Nightingale KR
    Ultrason Imaging; 2004 Apr; 26(2):100-14. PubMed ID: 15344414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.
    Erpelding TN; Hollman KW; O'Donnell M
    Ultrasound Med Biol; 2007 Feb; 33(2):263-9. PubMed ID: 17306697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature rise in a tissue-mimicking material generated by unfocused and focused ultrasonic transducers.
    Wu J; Chase JD; Zhu Z; Holzapfel TP
    Ultrasound Med Biol; 1992; 18(5):495-512. PubMed ID: 1509624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermoacoustic sensor for ultrasound power measurements and ultrasonic equipment calibration.
    Fay B; Rinker M; Lewin PA
    Ultrasound Med Biol; 1994; 20(4):367-73. PubMed ID: 8085293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acoustic Streaming in a Soft Tissue Microenvironment.
    El Ghamrawy A; de Comtes F; Koruk H; Mohammed A; Jones JR; Choi JJ
    Ultrasound Med Biol; 2019 Jan; 45(1):208-217. PubMed ID: 30336964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.