These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11731085)

  • 1. The enhancement of electrostriction caused by lowering the solvent dielectric constant leads to the decrease of activation energy in trypsin catalysis.
    Park H; Chi YM
    Biochim Biophys Acta; 2001 Nov; 1568(1):53-9. PubMed ID: 11731085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature effects on the catalytic efficiency, rate enhancement, and transition state affinity of cytidine deaminase, and the thermodynamic consequences for catalysis of removing a substrate "anchor".
    Snider MJ; Gaunitz S; Ridgway C; Short SA; Wolfenden R
    Biochemistry; 2000 Aug; 39(32):9746-53. PubMed ID: 10933791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the solvent representation on vibrational entropy calculations: generalized born versus distance-dependent dielectric model.
    Kopitz H; Cashman DA; Pfeiffer-Marek S; Gohlke H
    J Comput Chem; 2012 Apr; 33(9):1004-13. PubMed ID: 22298332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramolecular charge transfer and dielectric solvent relaxation in n-propyl cyanide. N-phenylpyrrole and 4-dimethylamino-4'-cyanostilbene.
    Druzhinin SI; Galievsky VA; Yoshihara T; Zachariasse KA
    J Phys Chem A; 2006 Nov; 110(47):12760-8. PubMed ID: 17125289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state kinetics and thermodynamics of the hydrolysis of beta-lactoglobulin by trypsin.
    Olsen K; Otte J; Skibsted LH
    J Agric Food Chem; 2000 Aug; 48(8):3086-9. PubMed ID: 10956073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobic interactions control zymogen activation in the trypsin family of serine proteases.
    Hedstrom L; Lin TY; Fast W
    Biochemistry; 1996 Apr; 35(14):4515-23. PubMed ID: 8605201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical studies of the transition-state structures and free energy barriers for base-catalyzed hydrolysis of amides.
    Xiong Y; Zhan CG
    J Phys Chem A; 2006 Nov; 110(46):12644-52. PubMed ID: 17107116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of the stabilization of tetrahedral adducts by trypsin and delta-chymotrypsin.
    Finucane MD; Malthouse JP
    Biochem J; 1992 Sep; 286 ( Pt 3)(Pt 3):889-900. PubMed ID: 1417749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of the medium dielectric strength upon trypsin kinetics.
    CASTANEDA-AGULLO M; DEL CASTILLO LM
    J Gen Physiol; 1959 Jan; 42(3):617-34. PubMed ID: 13620891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvation properties of N-substituted cis and trans amides are not identical: significant enthalpy and entropy changes are revealed by the use of variable temperature 1H NMR in aqueous and chloroform solutions and ab initio calculations.
    Troganis AN; Sicilia E; Barbarossou K; Gerothanassis IP; Russo N
    J Phys Chem A; 2005 Dec; 109(51):11878-84. PubMed ID: 16366639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemistry of cytochrome C in aqueous and mixed solvent solutions: thermodynamics, kinetics, and the effect of solvent dielectric constant.
    O'Reilly NJ; Magner E
    Langmuir; 2005 Feb; 21(3):1009-14. PubMed ID: 15667182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on immobilized trypsin in high concentrations of organic solvents.
    Weetall HH; Vann WP
    Biotechnol Bioeng; 1976 Jan; 18(1):105-18. PubMed ID: 2353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laurdan solvatochromism: solvent dielectric relaxation and intramolecular excited-state reaction.
    Viard M; Gallay J; Vincent M; Meyer O; Robert B; Paternostre M
    Biophys J; 1997 Oct; 73(4):2221-34. PubMed ID: 9336218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic Studies of the Effect of pH on the Trypsin-Catalyzed Hydrolysis of
    Malthouse JPG
    ACS Omega; 2020 Mar; 5(10):4915-4923. PubMed ID: 32201777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is silica really an anomalous oxide? Surface acidity and aqueous hydrolysis revisited.
    Sahai N
    Environ Sci Technol; 2002 Feb; 36(3):445-52. PubMed ID: 11871560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study.
    Ishida T; Kato S
    J Am Chem Soc; 2004 Jun; 126(22):7111-8. PubMed ID: 15174882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic mechanism of SGAP, a double-zinc aminopeptidase from Streptomyces griseus.
    Hershcovitz YF; Gilboa R; Reiland V; Shoham G; Shoham Y
    FEBS J; 2007 Aug; 274(15):3864-76. PubMed ID: 17608735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do enzymes change the nature of transition states? Mapping the transition state for general acid-base catalysis of a serine protease.
    Bott RR; Chan G; Domingo B; Ganshaw G; Hsia CY; Knapp M; Murray CJ
    Biochemistry; 2003 Sep; 42(36):10545-53. PubMed ID: 12962477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of povidone with aromatic compounds III: Thermodynamics of the binding equilibria and interaction forces in buffer solutions at varying pH values and varying dielectric constant.
    Plaizier-Vercammen JA; De Nève RE
    J Pharm Sci; 1982 May; 71(5):552-6. PubMed ID: 7097503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.