These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 11731145)
1. Arsenite oxidation and arsenate respiration by a new Thermus isolate. Gihring TM; Banfield JF FEMS Microbiol Lett; 2001 Nov; 204(2):335-40. PubMed ID: 11731145 [TBL] [Abstract][Full Text] [Related]
2. Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. Handley KM; Héry M; Lloyd JR Int J Syst Evol Microbiol; 2009 Apr; 59(Pt 4):886-92. PubMed ID: 19329625 [TBL] [Abstract][Full Text] [Related]
3. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Anderson CR; Cook GM Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729 [TBL] [Abstract][Full Text] [Related]
4. Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Kieft TL; Fredrickson JK; Onstott TC; Gorby YA; Kostandarithes HM; Bailey TJ; Kennedy DW; Li SW; Plymale AE; Spadoni CM; Gray MS Appl Environ Microbiol; 1999 Mar; 65(3):1214-21. PubMed ID: 10049886 [TBL] [Abstract][Full Text] [Related]
5. Selenate-dependent anaerobic arsenite oxidation by a bacterium from Mono Lake, California. Fisher JC; Hollibaugh JT Appl Environ Microbiol; 2008 May; 74(9):2588-94. PubMed ID: 18326681 [TBL] [Abstract][Full Text] [Related]
6. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490 [TBL] [Abstract][Full Text] [Related]
7. Thermus islandicus sp. nov., a mixotrophic sulfur-oxidizing bacterium isolated from the Torfajokull geothermal area. Bjornsdottir SH; Petursdottir SK; Hreggvidsson GO; Skirnisdottir S; Hjorleifsdottir S; Arnfinnsson J; Kristjansson JK Int J Syst Evol Microbiol; 2009 Dec; 59(Pt 12):2962-6. PubMed ID: 19628590 [TBL] [Abstract][Full Text] [Related]
8. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters. Fazi S; Crognale S; Casentini B; Amalfitano S; Lotti F; Rossetti S Microb Ecol; 2016 Jul; 72(1):25-35. PubMed ID: 27090902 [TBL] [Abstract][Full Text] [Related]
9. Thermus sediminis sp. nov., a thiosulfate-oxidizing and arsenate-reducing organism isolated from Little Hot Creek in the Long Valley Caldera, California. Zhou EM; Xian WD; Mefferd CC; Thomas SC; Adegboruwa AL; Williams N; Murugapiran SK; Dodsworth JA; Ganji R; Li MM; Ding YP; Liu L; Woyke T; Li WJ; Hedlund BP Extremophiles; 2018 Nov; 22(6):983-991. PubMed ID: 30219948 [TBL] [Abstract][Full Text] [Related]
10. A novel arsenate respiring isolate that can utilize aromatic substrates. Liu A; Garcia-Dominguez E; Rhine ED; Young LY FEMS Microbiol Ecol; 2004 Jun; 48(3):323-32. PubMed ID: 19712302 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen formation by an arsenate-reducing Pseudomonas putida, isolated from arsenic-contaminated groundwater in West Bengal, India. Freikowski D; Winter J; Gallert C Appl Microbiol Biotechnol; 2010 Dec; 88(6):1363-71. PubMed ID: 20821202 [TBL] [Abstract][Full Text] [Related]
12. A microbial arsenic cycle in a salt-saturated, extreme environment. Oremland RS; Kulp TR; Blum JS; Hoeft SE; Baesman S; Miller LG; Stolz JF Science; 2005 May; 308(5726):1305-8. PubMed ID: 15919992 [TBL] [Abstract][Full Text] [Related]
13. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Zhang J; Zhou W; Liu B; He J; Shen Q; Zhao FJ Environ Sci Technol; 2015 May; 49(10):5956-64. PubMed ID: 25905768 [TBL] [Abstract][Full Text] [Related]
14. Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis. Handley KM; Héry M; Lloyd JR Environ Microbiol; 2009 Jun; 11(6):1601-11. PubMed ID: 19226300 [TBL] [Abstract][Full Text] [Related]
15. Flexible bacterial strains that oxidize arsenite in anoxic or aerobic conditions and utilize hydrogen or acetate as alternative electron donors. Rodríguez-Freire L; Sun W; Sierra-Alvarez R; Field JA Biodegradation; 2012 Feb; 23(1):133-43. PubMed ID: 21706372 [TBL] [Abstract][Full Text] [Related]
16. Arsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park. Donahoe-Christiansen J; D'Imperio S; Jackson CR; Inskeep WP; McDermott TR Appl Environ Microbiol; 2004 Mar; 70(3):1865-8. PubMed ID: 15006819 [TBL] [Abstract][Full Text] [Related]
17. Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Niggemyer A; Spring S; Stackebrandt E; Rosenzweig RF Appl Environ Microbiol; 2001 Dec; 67(12):5568-80. PubMed ID: 11722908 [TBL] [Abstract][Full Text] [Related]
18. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics. Hatayama M; Sato T; Shinoda K; Inoue C J Biosci Bioeng; 2011 Mar; 111(3):326-32. PubMed ID: 21185228 [TBL] [Abstract][Full Text] [Related]
19. A novel arsenate reductase from the bacterium Thermus thermophilus HB27: its role in arsenic detoxification. Del Giudice I; Limauro D; Pedone E; Bartolucci S; Fiorentino G Biochim Biophys Acta; 2013 Oct; 1834(10):2071-9. PubMed ID: 23800470 [TBL] [Abstract][Full Text] [Related]
20. Thermus tengchongensis sp. nov., isolated from a geothermally heated soil sample in Tengchong, Yunnan, south-west China. Yu TT; Yao JC; Ming H; Yin YR; Zhou EM; Liu MJ; Tang SK; Li WJ Antonie Van Leeuwenhoek; 2013 Mar; 103(3):513-8. PubMed ID: 23104072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]