These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 11731149)

  • 21. Influence of the composition of the cellulolytic flora on the development of hydrogenotrophic microorganisms, hydrogen utilization, and methane production in the rumens of gnotobiotically reared lambs.
    Chaucheyras-Durand F; Masséglia S; Fonty G; Forano E
    Appl Environ Microbiol; 2010 Dec; 76(24):7931-7. PubMed ID: 20971877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semi-quantitative analysis of Ruminococcus flavefaciens, Fibrobacter succinogenes and Streptococcus bovis in the equine large intestine using real-time polymerase chain reaction.
    Hastie PM; Mitchell K; Murray JA
    Br J Nutr; 2008 Sep; 100(3):561-8. PubMed ID: 18377691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cereal supplementation modified the fibrolytic activity but not the structure of the cellulolytic bacterial community associated with rumen solid digesta.
    Martin C; Millet L; Fonty G; Michalet-Doreau B
    Reprod Nutr Dev; 2001; 41(5):413-24. PubMed ID: 11993799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Incorporation of [(15)N] ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17.
    Atasoglu C; Newbold CJ; Wallace RJ
    Appl Environ Microbiol; 2001 Jun; 67(6):2819-22. PubMed ID: 11375199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y; Weimer PJ
    Appl Environ Microbiol; 1997 Feb; 63(2):743-8. PubMed ID: 9023951
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time PCR detection of the effects of protozoa on rumen bacteria in cattle.
    Ozutsumi Y; Tajima K; Takenaka A; Itabashi H
    Curr Microbiol; 2006 Feb; 52(2):158-62. PubMed ID: 16467991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages.
    Fondevila M; Dehority BA
    J Anim Sci; 1996 Mar; 74(3):678-84. PubMed ID: 8707727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competition between ruminal cellulolytic bacteria for adhesion to cellulose.
    Mosoni P; Fonty G; Gouet P
    Curr Microbiol; 1997 Jul; 35(1):44-7. PubMed ID: 9175559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A cysteine desulphurase gene from the cellulolytic rumen anaerobe Ruminococcus flavefaciens.
    Kirby J; Wright F; Flint HJ
    Biochim Biophys Acta; 1998 Jul; 1386(1):233-7. PubMed ID: 9675295
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Invited review: adhesion mechanisms of rumen cellulolytic bacteria.
    Miron J; Ben-Ghedalia D; Morrison M
    J Dairy Sci; 2001 Jun; 84(6):1294-309. PubMed ID: 11417686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen.
    Denman SE; McSweeney CS
    FEMS Microbiol Ecol; 2006 Dec; 58(3):572-82. PubMed ID: 17117998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ruminal cellulolytic bacteria abundance leads to the variation in fatty acids in the rumen digesta and meat of fattening lambs.
    Zhang Z; Niu X; Li F; Li F; Guo L
    J Anim Sci; 2020 Jul; 98(7):. PubMed ID: 32687154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria.
    Shi Y; Weimer PJ
    Appl Environ Microbiol; 1996 Mar; 62(3):1084-8. PubMed ID: 8975600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repeated ruminal dosing of Ruminococcus spp. does not result in persistence, but changes in other microbial populations occur that can be measured with quantitative 16S-rRNA-based probes.
    Krause DO; Bunch RJ; Conlan LL; Kennedy PM; Smith WJ; Mackie RI; McSweeney CS
    Microbiology (Reading); 2001 Jul; 147(Pt 7):1719-1729. PubMed ID: 11429450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ identification of carboxymethyl cellulose-digesting bacteria in the rumen of cattle fed alfalfa or triticale.
    Kong Y; Xia Y; Seviour R; He M; McAllister T; Forster R
    FEMS Microbiol Ecol; 2012 Apr; 80(1):159-67. PubMed ID: 22224860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a signature probe targeting the 16S-23S rRNA internal transcribed spacer of a ruminal Ruminococcus flavefaciens isolate from reindeer.
    Præsteng KE; Mackie RI; Cann IK; Mathiesen SD; Sundset MA
    Benef Microbes; 2011 Mar; 2(1):47-55. PubMed ID: 21831789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of glycerol on the growth, adhesion, and cellulolytic activity of rumen cellulolytic bacteria and anaerobic fungi.
    Roger V; Fonty G; Andre C; Gouet P
    Curr Microbiol; 1992 Oct; 25(4):197-201. PubMed ID: 1368974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR.
    Tajima K; Aminov RI; Nagamine T; Matsui H; Nakamura M; Benno Y
    Appl Environ Microbiol; 2001 Jun; 67(6):2766-74. PubMed ID: 11375193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochanin A improves fibre fermentation by cellulolytic bacteria.
    Harlow BE; Flythe MD; Aiken GE
    J Appl Microbiol; 2018 Jan; 124(1):58-66. PubMed ID: 29112792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions between rumen bacterial strains during the degradation and utilization of the monosaccharides of barley straw cell-walls.
    Miron J; Duncan SH; Stewart CS
    J Appl Bacteriol; 1994 Mar; 76(3):282-7. PubMed ID: 8157547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.