BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11731564)

  • 1. Cochlear outer-hair-cell efferents and complex-sound-induced hearing loss: protective and opposing effects.
    Rajan R
    J Neurophysiol; 2001 Dec; 86(6):3073-6. PubMed ID: 11731564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise priming and the effects of different cochlear centrifugal pathways on loud-sound-induced hearing loss.
    Rajan R
    J Neurophysiol; 2001 Sep; 86(3):1277-88. PubMed ID: 11535676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unilateral hearing losses alter loud sound-induced temporary threshold shifts and efferent effects in the normal-hearing ear.
    Rajan R
    J Neurophysiol; 2001 Mar; 85(3):1257-69. PubMed ID: 11247994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contextual modulation of olivocochlear pathway effects on loud sound-induced cochlear hearing desensitization.
    Rajan R
    J Neurophysiol; 2005 Apr; 93(4):1977-88. PubMed ID: 15774711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centrifugal pathways protect hearing sensitivity at the cochlea in noisy environments that exacerbate the damage induced by loud sound.
    Rajan R
    J Neurosci; 2000 Sep; 20(17):6684-93. PubMed ID: 10964973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of the Medial Olivocochlear System Prevents Hidden Hearing Loss.
    Boero LE; Castagna VC; Di Guilmi MN; Goutman JD; Elgoyhen AB; Gómez-Casati ME
    J Neurosci; 2018 Aug; 38(34):7440-7451. PubMed ID: 30030403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crossed and uncrossed olivocochlear pathways exacerbate temporary shifts in hearing sensitivity after narrow band sound trauma in normal ears of animals with unilateral hearing impairment.
    Rajan R
    Audiol Neurootol; 2003; 8(5):250-62. PubMed ID: 12904680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efferent neurons control hearing sensitivity and protect hearing from noise through the regulation of gap junctions between cochlear supporting cells.
    Zhao HB; Liu LM; Yu N; Zhu Y; Mei L; Chen J; Liang C
    J Neurophysiol; 2022 Jan; 127(1):313-327. PubMed ID: 34907797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. I. Rate-level functions.
    Guinan JJ; Gifford ML
    Hear Res; 1988 May; 33(2):97-113. PubMed ID: 3397330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of SK2 channels enhances efferent suppression of cochlear responses without enhancing noise resistance.
    Maison SF; Parker LL; Young L; Adelman JP; Zuo J; Liberman MC
    J Neurophysiol; 2007 Apr; 97(4):2930-6. PubMed ID: 17267753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medial olivocochlear efferent terminals are protected by sound conditioning.
    Canlon B; Fransson A; Viberg A
    Brain Res; 1999 Dec; 850(1-2):253-60. PubMed ID: 10629772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bandwidth determines modulatory effects of centrifugal pathways on cochlear hearing desensitization caused by loud sound.
    Rajan R
    Eur J Neurosci; 2006 Dec; 24(12):3589-600. PubMed ID: 17229107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protection from acoustic trauma is not a primary function of the medial olivocochlear efferent system.
    Christopher Kirk E; Smith DW
    J Assoc Res Otolaryngol; 2003 Dec; 4(4):445-65. PubMed ID: 12784134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bandwidth dependency of cochlear centrifugal pathways in modulating hearing desensitization caused by loud sound.
    Rajan R
    Neuroscience; 2007 Jul; 147(4):1103-13. PubMed ID: 17600627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective removal of lateral olivocochlear efferents increases vulnerability to acute acoustic injury.
    Darrow KN; Maison SF; Liberman MC
    J Neurophysiol; 2007 Feb; 97(2):1775-85. PubMed ID: 17093118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-unit labeling of medial olivocochlear neurons: the cochlear frequency map for efferent axons.
    Brown MC
    J Neurophysiol; 2014 Jun; 111(11):2177-86. PubMed ID: 24598524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medial olivocochlear efferent activity in awake guinea pigs.
    Guitton MJ; Avan P; Puel JL; Bonfils P
    Neuroreport; 2004 Jun; 15(9):1379-82. PubMed ID: 15194856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise.
    Liberman MC
    J Neurophysiol; 1988 Nov; 60(5):1779-98. PubMed ID: 3199181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Descending projections from the inferior colliculus to medial olivocochlear efferents: Mice with normal hearing, early onset hearing loss, and congenital deafness.
    Suthakar K; Ryugo DK
    Hear Res; 2017 Jan; 343():34-49. PubMed ID: 27421755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of GABAB receptors in cochlear neurons: threshold elevation suggests modulation of outer hair cell function by type II afferent fibers.
    Maison SF; Casanova E; Holstein GR; Bettler B; Liberman MC
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):50-63. PubMed ID: 18925381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.