These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11732329)

  • 1. Role of extracellular peroxidase in the superoxide production by wheat root cells.
    Minibayeva FV; Gordon LK; Kolesnikov OP; Chasov AV
    Protoplasma; 2001; 217(1-3):125-8. PubMed ID: 11732329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salicylic acid changes the properties of extracellular peroxidase activity secreted from wounded wheat (Triticum aestivum L.) roots.
    Minibayeva F; Mika A; Lüthje S
    Protoplasma; 2003 May; 221(1-2):67-72. PubMed ID: 12768343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cell surface peroxidase--generator of superoxide anion in wheat root cells under wound stress].
    Chasov AV; Gordon LKh; Kolesnikov OP; Minibaeva FV
    Tsitologiia; 2002; 44(7):691-6. PubMed ID: 12455380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc induced phytotoxicity mechanism involved in root growth of Triticum aestivum L.
    Li X; Yang Y; Zhang J; Jia L; Li Q; Zhang T; Qiao K; Ma S
    Ecotoxicol Environ Saf; 2012 Dec; 86():198-203. PubMed ID: 23067545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of nitric oxide and reactive oxygen species and associated regulation of root growth in wheat seedlings under zinc stress.
    Duan X; Li X; Ding F; Zhao J; Guo A; Zhang L; Yao J; Yang Y
    Ecotoxicol Environ Saf; 2015 Mar; 113():95-102. PubMed ID: 25485957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of exogenous phenols on superoxide production by extracellular peroxidase from wheat seedling roots.
    Chasov AV; Minibayeva FV
    Biochemistry (Mosc); 2009 Jul; 74(7):766-74. PubMed ID: 19747097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide synthase and dismutase activity of plasma membranes from maize roots.
    Vuletić M; Hadzi-Tasković Sukalović V; Vucinić Z
    Protoplasma; 2003 May; 221(1-2):73-7. PubMed ID: 12768344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influence of salicylic and succinic acids on formation of active oxygen forms in wheat coleoptiles].
    Kolupaiev IuIe; Iastreb TO; Shvidenko MV; Karpets' IuV
    Ukr Biokhim Zh (1999); 2011; 83(5):82-8. PubMed ID: 22276431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Induction of heat resistance in wheat coleoptiles by salicylic and succinic acids: connection of the effect with the generation and neutralization of active oxygen forms].
    Kolupaev IuE; Iastreb TO; Shvidenko NV; Karpets IuV
    Prikl Biokhim Mikrobiol; 2012; 48(5):550-6. PubMed ID: 23101394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination].
    Sakhabutdinova AR; Fatkhutdinova DR; Shakirova FM
    Prikl Biokhim Mikrobiol; 2004; 40(5):579-83. PubMed ID: 15553791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine.
    Aitken RJ; Fisher HM; Fulton N; Gomez E; Knox W; Lewis B; Irvine S
    Mol Reprod Dev; 1997 Aug; 47(4):468-82. PubMed ID: 9211432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species.
    Minibayeva F; Kolesnikov O; Chasov A; Beckett RP; Lüthje S; Vylegzhanina N; Buck F; Böttger M
    Plant Cell Environ; 2009 May; 32(5):497-508. PubMed ID: 19183290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iTRAQ-based proteomics screen for potential regulators of wheat (Triticum aestivum L.) root cell wall component response to Al stress.
    Yang Y; Ma L; Zeng H; Chen LY; Zheng Y; Li CX; Yang ZP; Wu N; Mu X; Dai CY; Guan HL; Cui XM; Liu Y
    Gene; 2018 Oct; 675():301-311. PubMed ID: 30180969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of O2-reducing activity of horseradish peroxidase by diphenyleneiodonium.
    Frahry G; Schopfer P
    Phytochemistry; 1998 May; 48(2):223-7. PubMed ID: 9637062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apoplastic superoxide production and peroxidase activity by intact and excised axenically grown seedling roots of sunflower.
    Garrido I; Espinosa F; Alvarez-Tinaut MC
    Protoplasma; 2012 Oct; 249(4):1071-80. PubMed ID: 22101944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidase-dependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat.
    Yang Y; Xu S; An L; Chen N
    J Plant Physiol; 2007 Nov; 164(11):1429-35. PubMed ID: 17223222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess.
    Quartacci MF; Cosi E; Navari-Izzo F
    J Exp Bot; 2001 Jan; 52(354):77-84. PubMed ID: 11181715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of NADPH oxidase in hydrogen peroxide accumulation by Aspergillus niger elicitor-induced Taxus chinensis cell cultures.
    Qin WM; Lan WZ; Yang X
    J Plant Physiol; 2004 Apr; 161(4):355-61. PubMed ID: 15128022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide anion generation response to wound in Arabidopsis hypocotyl cutting.
    Ren X; Wang M; Wang Y; Huang A
    Plant Signal Behav; 2021 Feb; 16(2):1848086. PubMed ID: 33210579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron spin resonance detection of extracellular superoxide anion released by cultured endothelial cells.
    Souchard JP; Barbacanne MA; Margeat E; Maret A; Nepveu F; Arnal JF
    Free Radic Res; 1998 Nov; 29(5):441-9. PubMed ID: 9925037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.