BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 11732922)

  • 21. The mechanism of Ras GTPase activation by neurofibromin.
    Phillips RA; Hunter JL; Eccleston JF; Webb MR
    Biochemistry; 2003 Apr; 42(13):3956-65. PubMed ID: 12667087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transient kinetic investigation of GTP hydrolysis catalyzed by interferon-gamma-induced hGBP1 (human guanylate binding protein 1).
    Kunzelmann S; Praefcke GJ; Herrmann C
    J Biol Chem; 2006 Sep; 281(39):28627-35. PubMed ID: 16873363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular mechanism of GTP hydrolysis by bovine transducin: pre-steady-state kinetic analyses.
    Ting TD; Ho YK
    Biochemistry; 1991 Sep; 30(37):8996-9007. PubMed ID: 1654084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic analysis of the hydrolysis of GTP by p21N-ras. The basal GTPase mechanism.
    Neal SE; Eccleston JF; Hall A; Webb MR
    J Biol Chem; 1988 Dec; 263(36):19718-22. PubMed ID: 2848838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ras catalyzes GTP hydrolysis by shifting negative charges from gamma- to beta-phosphate as revealed by time-resolved FTIR difference spectroscopy.
    Allin C; Gerwert K
    Biochemistry; 2001 Mar; 40(10):3037-46. PubMed ID: 11258917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding of nucleotides to guanylate kinase, p21(ras), and nucleoside-diphosphate kinase studied by nano-electrospray mass spectrometry.
    Prinz H; Lavie A; Scheidig AJ; Spangenberg O; Konrad M
    J Biol Chem; 1999 Dec; 274(50):35337-42. PubMed ID: 10585400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energetics of S-adenosylmethionine synthetase catalysis.
    McQueney MS; Anderson KS; Markham GD
    Biochemistry; 2000 Apr; 39(15):4443-54. PubMed ID: 10757994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Guanine triphosphate-binding site regulation by follicle-stimulating hormone and guanine diphosphate in membranes from immature rat Sertoli cells.
    Fletcher PW; Reichert LE
    Endocrinology; 1986 Nov; 119(5):2221-6. PubMed ID: 3095103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphate release during microtubule assembly: what stabilizes growing microtubules?
    Vandecandelaere A; Brune M; Webb MR; Martin SR; Bayley PM
    Biochemistry; 1999 Jun; 38(25):8179-88. PubMed ID: 10387063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural insights into the GTPase domain of Escherichia coli MnmE protein.
    Monleón D; Martínez-Vicente M; Esteve V; Yim L; Prado S; Armengod ME; Celda B
    Proteins; 2007 Feb; 66(3):726-39. PubMed ID: 17143896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of GDP and GTP binding in cardiac sarcolemma by muscarinic receptor agonists.
    Quist E
    Mol Pharmacol; 1992 Jan; 41(1):168-76. PubMed ID: 1732718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rhizobium meliloti NodP and NodQ form a multifunctional sulfate-activating complex requiring GTP for activity.
    Schwedock JS; Liu C; Leyh TS; Long SR
    J Bacteriol; 1994 Nov; 176(22):7055-64. PubMed ID: 7961471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insight into temperature dependence of GTPase activity in human guanylate binding protein-1.
    Rani A; Pandita E; Rahman S; Deep S; Sau AK
    PLoS One; 2012; 7(7):e40487. PubMed ID: 22859948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GTP hydrolysis mechanisms in ras p21 and in the ras-GAP complex studied by fluorescence measurements on tryptophan mutants.
    Antonny B; Chardin P; Roux M; Chabre M
    Biochemistry; 1991 Aug; 30(34):8287-95. PubMed ID: 1883817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Delayed release of inorganic phosphate from elongation factor Tu following GTP hydrolysis on the ribosome.
    Kothe U; Rodnina MV
    Biochemistry; 2006 Oct; 45(42):12767-74. PubMed ID: 17042495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A two-site kinetic mechanism for ATP binding and hydrolysis by E. coli Rep helicase dimer bound to a single-stranded oligodeoxynucleotide.
    Hsieh J; Moore KJ; Lohman TM
    J Mol Biol; 1999 Apr; 288(2):255-74. PubMed ID: 10329141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of the bifunctional ATP sulfurylase-APS kinase from the chemolithotrophic thermophile Aquifex aeolicus.
    Yu Z; Lansdon EB; Segel IH; Fisher AJ
    J Mol Biol; 2007 Jan; 365(3):732-43. PubMed ID: 17095009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using fluorescence spectroscopy.
    Leonard DA; Evans T; Hart M; Cerione RA; Manor D
    Biochemistry; 1994 Oct; 33(40):12323-8. PubMed ID: 7918454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic and thermodynamic characterizations of yeast guanylate kinase.
    Li Y; Zhang Y; Yan H
    J Biol Chem; 1996 Nov; 271(45):28038-44. PubMed ID: 8910414
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EF-G-dependent GTPase on the ribosome. conformational change and fusidic acid inhibition.
    Seo HS; Abedin S; Kamp D; Wilson DN; Nierhaus KH; Cooperman BS
    Biochemistry; 2006 Feb; 45(8):2504-14. PubMed ID: 16489743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.