These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 11733016)

  • 1. Shifted positioning of the anticodon nucleotide residues of amber suppressor tRNA species by Escherichia coli arginyl-tRNA synthetase.
    Kiga D; Sakamoto K; Sato S; Hirao I; Yokoyama S
    Eur J Biochem; 2001 Dec; 268(23):6207-13. PubMed ID: 11733016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switching tRNA(Gln) identity from glutamine to tryptophan.
    Rogers MJ; Adachi T; Inokuchi H; Söll D
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3463-7. PubMed ID: 1565639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotides that determine Escherichia coli tRNA(Arg) and tRNA(Lys) acceptor identities revealed by analyses of mutant opal and amber suppressor tRNAs.
    McClain WH; Foss K; Jenkins RA; Schneider J
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9260-4. PubMed ID: 2251270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of suppressor methionyl-tRNA synthetases: mapping the tRNA anticodon binding site.
    Meinnel T; Mechulam Y; Le Corre D; Panvert M; Blanquet S; Fayat G
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):291-5. PubMed ID: 1986377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two acidic residues of Escherichia coli methionyl-tRNA synthetase act as negative discriminants towards the binding of non-cognate tRNA anticodons.
    Schmitt E; Meinnel T; Panvert M; Mechulam Y; Blanquet S
    J Mol Biol; 1993 Oct; 233(4):615-28. PubMed ID: 8411169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limited set of amino acid residues in a class Ia aminoacyl-tRNA synthetase is crucial for tRNA binding.
    Geslain R; Bey G; Cavarelli J; Eriani G
    Biochemistry; 2003 Dec; 42(51):15092-101. PubMed ID: 14690419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of Escherichia coli Arginyl-tRNA Synthetase in Complex with tRNA
    Stephen P; Ye S; Zhou M; Song J; Zhang R; Wang ED; Giegé R; Lin SX
    J Mol Biol; 2018 May; 430(11):1590-1606. PubMed ID: 29678554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actions of the anticodon arm in translation on the phenotypes of RNA mutants.
    Yarus M; Cline SW; Wier P; Breeden L; Thompson RC
    J Mol Biol; 1986 Nov; 192(2):235-55. PubMed ID: 2435916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The anticodon contains a major element of the identity of arginine transfer RNAs.
    Schulman LH; Pelka H
    Science; 1989 Dec; 246(4937):1595-7. PubMed ID: 2688091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.
    Rogers MJ; Adachi T; Inokuchi H; Söll D
    Proc Natl Acad Sci U S A; 1994 Jan; 91(1):291-5. PubMed ID: 7506418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-arginine recognition by yeast arginyl-tRNA synthetase.
    Cavarelli J; Delagoutte B; Eriani G; Gangloff J; Moras D
    EMBO J; 1998 Sep; 17(18):5438-48. PubMed ID: 9736621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate-induced conformational changes in Escherichia coli arginyl-tRNA synthetase observed by 19F NMR spectroscopy.
    Yao YN; Zhang QS; Yan XZ; Zhu G; Wang ED
    FEBS Lett; 2003 Jul; 547(1-3):197-200. PubMed ID: 12860413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the suppression efficiency and amino acid identity of an artificial yeast amber isoleucine transfer RNA in Escherichia coli by a G-U pair in the anticodon stem.
    Büttcher V; Senger B; Schumacher S; Reinbolt J; Fasiolo F
    Biochem Biophys Res Commun; 1994 Apr; 200(1):370-7. PubMed ID: 8166708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The tRNA-dependent activation of arginine by arginyl-tRNA synthetase requires inter-domain communication.
    Lazard M; Agou F; Kerjan P; Mirande M
    J Mol Biol; 2000 Sep; 302(4):991-1004. PubMed ID: 10993737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of recognition nucleotides for Escherichia coli phenylalanyl-tRNA synthetase.
    Peterson ET; Uhlenbeck OC
    Biochemistry; 1992 Oct; 31(42):10380-9. PubMed ID: 1420156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nucleotide change in the anticodon of an Escherichia coli serine transfer RNA results in supD-amber suppression.
    Steege DA
    Nucleic Acids Res; 1983 Jun; 11(11):3823-32. PubMed ID: 6344015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relationship of arginyl-tRNA synthetase from Escherichia coli: isolation and characterization of the argS mutation MA5002.
    Eriani G; Dirheimer G; Gangloff J
    Nucleic Acids Res; 1990 Mar; 18(6):1475-9. PubMed ID: 2183195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants in tRNA for activation of arginyl-tRNA synthetase: evidence that tRNA flexibility is required for the induced-fit mechanism.
    Guigou L; Mirande M
    Biochemistry; 2005 Dec; 44(50):16540-8. PubMed ID: 16342945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. tRNA structure and ribosomal function. I. tRNA nucleotide 27-43 mutations enhance first position wobble.
    Schultz DW; Yarus M
    J Mol Biol; 1994 Feb; 235(5):1381-94. PubMed ID: 8107080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine-395 is required for efficient in vivo and in vitro aminoacylation of tRNAs by Escherichia coli methionyl-tRNA synthetase.
    Ghosh G; Kim HY; Demaret JP; Brunie S; Schulman LH
    Biochemistry; 1991 Dec; 30(51):11767-74. PubMed ID: 1751493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.