These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 11733016)

  • 21. Role of the three consecutive G:C base pairs conserved in the anticodon stem of initiator tRNAs in initiation of protein synthesis in Escherichia coli.
    Mandal N; Mangroo D; Dalluge JJ; McCloskey JA; Rajbhandary UL
    RNA; 1996 May; 2(5):473-82. PubMed ID: 8665414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An anticodon change switches the identity of E. coli tRNA(mMet) from methionine to threonine.
    Schulman LH; Pelka H
    Nucleic Acids Res; 1990 Jan; 18(2):285-9. PubMed ID: 2109304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two separate peptides in Escherichia coli methionyl-tRNA synthetase form the anticodon binding site for methionine tRNA.
    Kim HY; Pelka H; Brunie S; Schulman LH
    Biochemistry; 1993 Oct; 32(39):10506-11. PubMed ID: 8399196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mirror image alternative interaction patterns of the same tRNA with either class I arginyl-tRNA synthetase or class II aspartyl-tRNA synthetase.
    Sissler M; Eriani G; Martin F; Giegé R; Florentz C
    Nucleic Acids Res; 1997 Dec; 25(24):4899-906. PubMed ID: 9396794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The tRNA-interacting factor p43 associates with mammalian arginyl-tRNA synthetase but does not modify its tRNA aminoacylation properties.
    Guigou L; Shalak V; Mirande M
    Biochemistry; 2004 Apr; 43(15):4592-600. PubMed ID: 15078106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of the tRNA anticodon recognition site of Escherichia coli methionyl-tRNA synthetase.
    Ghosh G; Pelka H; Schulman LH
    Biochemistry; 1990 Mar; 29(9):2220-5. PubMed ID: 2186810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases.
    Meinnel T; Mechulam Y; Fayat G; Blanquet S
    Nucleic Acids Res; 1992 Sep; 20(18):4741-6. PubMed ID: 1408786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, and initiation factor 2 on activity in initiation.
    Mayer C; Köhrer C; Kenny E; Prusko C; RajBhandary UL
    Biochemistry; 2003 May; 42(17):4787-99. PubMed ID: 12718519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and mutational studies of the recognition of the arginine tRNA-specific major identity element, A20, by arginyl-tRNA synthetase.
    Shimada A; Nureki O; Goto M; Takahashi S; Yokoyama S
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13537-42. PubMed ID: 11698642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recognition of E coli tRNAArg by arginyl tRNA synthetase.
    Chakraburtty K
    Nucleic Acids Res; 1980 Oct; 8(19):4459-72. PubMed ID: 6776488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A tRNA identity switch mediated by the binding interaction between a tRNA anticodon and the accessory domain of a class II aminoacyl-tRNA synthetase.
    Yan W; Augustine J; Francklyn C
    Biochemistry; 1996 May; 35(21):6559-68. PubMed ID: 8639604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anticodon shift in tRNA: a novel mechanism in missense and nonsense suppression.
    Murgola EJ; Prather NE; Mims BH; Pagel FT; Hijazi KA
    Proc Natl Acad Sci U S A; 1983 Aug; 80(16):4936-9. PubMed ID: 6348778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetases.
    Commans S; Lazard M; Delort F; Blanquet S; Plateau P
    J Mol Biol; 1998 May; 278(4):801-13. PubMed ID: 9614943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specific interaction between anticodon nuclease and the tRNA(Lys) wobble base.
    Jiang Y; Meidler R; Amitsur M; Kaufmann G
    J Mol Biol; 2001 Jan; 305(3):377-88. PubMed ID: 11152597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of transfer RNA suppressors in Escherichia coli. IV. Amber suppressor Su+6 a double mutant of a new species of leucine tRNA.
    Yoshimura M; Inokuchi H; Ozeki H
    J Mol Biol; 1984 Aug; 177(4):627-44. PubMed ID: 6207302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of N-terminal changes on arginyl-tRNA synthetase from Escherichia coli.
    Liu W; Liu MF; Xia X; Wang ED; Wang YL
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Mar; 34(2):131-7. PubMed ID: 12007009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identity of Saccharomyces cerevisiae tRNA(Trp) is not changed by an anticodon mutation that creates an amber suppressor.
    Yesland KD; Nelson AW; Six Feathers DM; Johnson JD
    J Biol Chem; 1993 Jan; 268(1):217-20. PubMed ID: 8416930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transfer RNA identity change in anticodon variants of E. coli tRNA(Phe) in vivo.
    Kim HS; Kim IY; Söll D; Lee SY
    Mol Cells; 2000 Feb; 10(1):76-82. PubMed ID: 10774751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of identity elements on the aminoacylation of tRNA(Arg) by plant and Escherichia coli arginyl-tRNA synthetases.
    Aldinger CA; Leisinger AK; Igloi GL
    FEBS J; 2012 Oct; 279(19):3622-3638. PubMed ID: 22831759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: site-directed mutagenesis of highly conserved residues.
    Soderberg T; Poulter CD
    Biochemistry; 2001 Feb; 40(6):1734-40. PubMed ID: 11327834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.