These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 11733016)

  • 41. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Permutation of a pair of tertiary nucleotides in a transfer RNA.
    Hou YM; Sterner T; Jansen M
    Biochemistry; 1995 Mar; 34(9):2978-84. PubMed ID: 7534478
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mischarging mutants of Su+2 glutamine tRNA in E. coli. I. Mutations near the anticodon cause mischarging.
    Yamao F; Inokuchi H; Ozeki H
    Jpn J Genet; 1988 Jun; 63(3):237-49. PubMed ID: 3078873
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Importance of the G27-A43 mismatch at the anticodon stem of Escherichia coli tRNA(Thr2).
    Komine Y; Inokuchi H
    FEBS Lett; 1990 Oct; 272(1-2):55-7. PubMed ID: 2226835
    [TBL] [Abstract][Full Text] [Related]  

  • 45. tRNA leucine identity and recognition sets.
    Tocchini-Valentini G; Saks ME; Abelson J
    J Mol Biol; 2000 May; 298(5):779-93. PubMed ID: 10801348
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transfer RNA mischarging mediated by a mutant Escherichia coli glutaminyl-tRNA synthetase.
    Inokuchi H; Hoben P; Yamao F; Ozeki H; Söll D
    Proc Natl Acad Sci U S A; 1984 Aug; 81(16):5076-80. PubMed ID: 6382258
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of cysteine residues on the activity of arginyl-tRNA synthetase from Escherichia coli.
    Liu M; Huang Y; Wu J; Wang E; Wang Y
    Biochemistry; 1999 Aug; 38(34):11006-11. PubMed ID: 10460155
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase.
    Jahn M; Rogers MJ; Söll D
    Nature; 1991 Jul; 352(6332):258-60. PubMed ID: 1857423
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity.
    Rogers KC; Söll D
    Biochemistry; 1993 Dec; 32(51):14210-9. PubMed ID: 7505112
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crystal structure of E. coli arginyl-tRNA synthetase and ligand binding studies revealed key residues in arginine recognition.
    Bi K; Zheng Y; Gao F; Dong J; Wang J; Wang Y; Gong W
    Protein Cell; 2014 Feb; 5(2):151-9. PubMed ID: 24474195
    [TBL] [Abstract][Full Text] [Related]  

  • 52. tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding.
    Delagoutte B; Moras D; Cavarelli J
    EMBO J; 2000 Nov; 19(21):5599-610. PubMed ID: 11060012
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural basis of translational control by Escherichia coli threonyl tRNA synthetase.
    Torres-Larios A; Dock-Bregeon AC; Romby P; Rees B; Sankaranarayanan R; Caillet J; Springer M; Ehresmann C; Ehresmann B; Moras D
    Nat Struct Biol; 2002 May; 9(5):343-7. PubMed ID: 11953757
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acquisition of a stable mutation in metY allows efficient initiation from an amber codon in Escherichia coli.
    Das G; Dineshkumar TK; Thanedar S; Varshney U
    Microbiology (Reading); 2005 Jun; 151(Pt 6):1741-1750. PubMed ID: 15941983
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The tRNA species for redundant genetic codons NNU and NNC. A thought on the absence of phenylalanine tRNA with AAA anticodon in Escherichia coli.
    Gavini N; Pulakat L
    J Biol Chem; 1992 Feb; 267(4):2240-3. PubMed ID: 1370814
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro conversion of a methionine to a glutamine-acceptor tRNA.
    Schulman LH; Pelka H
    Biochemistry; 1985 Dec; 24(25):7309-14. PubMed ID: 3910101
    [TBL] [Abstract][Full Text] [Related]  

  • 57. tRNA anticodon replacement experiments show that ribosomal frameshifting can be caused by doublet decoding.
    Bruce AG; Atkins JF; Gesteland RF
    Proc Natl Acad Sci U S A; 1986 Jul; 83(14):5062-6. PubMed ID: 2425361
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recognition of tRNA(Cys) by Escherichia coli cysteinyl-tRNA synthetase.
    Komatsoulis GA; Abelson J
    Biochemistry; 1993 Jul; 32(29):7435-44. PubMed ID: 8338841
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthetase recognition determinants of E. coli valine transfer RNA.
    Horowitz J; Chu WC; Derrick WB; Liu JC; Liu M; Yue D
    Biochemistry; 1999 Jun; 38(24):7737-46. PubMed ID: 10387013
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rapid determination of nucleotides that define tRNA(Gly) acceptor identity.
    McClain WH; Foss K; Jenkins RA; Schneider J
    Proc Natl Acad Sci U S A; 1991 Jul; 88(14):6147-51. PubMed ID: 2068095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.