These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11734205)

  • 1. Both N-terminal catalytic and C-terminal RNA binding domain contribute to substrate specificity and cleavage site selection of RNase III.
    Conrad C; Evguenieva-Hackenberg E; Klug G
    FEBS Lett; 2001 Nov; 509(1):53-8. PubMed ID: 11734205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic double-stranded-RNA processing activity of Escherichia coli ribonuclease III lacking the dsRNA-binding domain.
    Sun W; Jun E; Nicholson AW
    Biochemistry; 2001 Dec; 40(49):14976-84. PubMed ID: 11732918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethidium-dependent uncoupling of substrate binding and cleavage by Escherichia coli ribonuclease III.
    Calin-Jageman I; Amarasinghe AK; Nicholson AW
    Nucleic Acids Res; 2001 May; 29(9):1915-25. PubMed ID: 11328875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different cleavage specificities of RNases III from Rhodobacter capsulatus and Escherichia coli.
    Conrad C; Rauhut R; Klug G
    Nucleic Acids Res; 1998 Oct; 26(19):4446-53. PubMed ID: 9742248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III--the effect of dsRNA binding on gene expression.
    Dasgupta S; Fernandez L; Kameyama L; Inada T; Nakamura Y; Pappas A; Court DL
    Mol Microbiol; 1998 May; 28(3):629-40. PubMed ID: 9632264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage.
    Blaszczyk J; Tropea JE; Bubunenko M; Routzahn KM; Waugh DS; Court DL; Ji X
    Structure; 2001 Dec; 9(12):1225-36. PubMed ID: 11738048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of action of Escherichia coli ribonuclease III. Stringent chemical requirement for the glutamic acid 117 side chain and Mn2+ rescue of the Glu117Asp mutant.
    Sun W; Nicholson AW
    Biochemistry; 2001 Apr; 40(16):5102-10. PubMed ID: 11305928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the dsRNA binding domain of E. coli RNase III.
    Kharrat A; Macias MJ; Gibson TJ; Nilges M; Pastore A
    EMBO J; 1995 Jul; 14(14):3572-84. PubMed ID: 7628457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro.
    Meng W; Nicholson AW
    Biochem J; 2008 Feb; 410(1):39-48. PubMed ID: 17953512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate recognition by a eukaryotic RNase III: the double-stranded RNA-binding domain of Rnt1p selectively binds RNA containing a 5'-AGNN-3' tetraloop.
    Nagel R; Ares M
    RNA; 2000 Aug; 6(8):1142-56. PubMed ID: 10943893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNase D, a reported new activity associated with HIV-1 reverse transcriptase, displays the same cleavage specificity as Escherichia coli RNase III.
    Hostomsky Z; Hudson GO; Rahmati S; Hostomska Z
    Nucleic Acids Res; 1992 Nov; 20(21):5819-24. PubMed ID: 1280810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The N-terminal domain that distinguishes yeast from bacterial RNase III contains a dimerization signal required for efficient double-stranded RNA cleavage.
    Lamontagne B; Tremblay A; Abou Elela S
    Mol Cell Biol; 2000 Feb; 20(4):1104-15. PubMed ID: 10648595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of ribonuclease III processing by double-helical sequence antideterminants.
    Zhang K; Nicholson AW
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13437-41. PubMed ID: 9391043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the enzyme binding domain of a ribonuclease III processing signal. Ethylation interference and hydroxyl radical footprinting using catalytically inactive RNase III mutants.
    Li H; Nicholson AW
    EMBO J; 1996 Mar; 15(6):1421-33. PubMed ID: 8635475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and analysis of the rnc gene for RNase III in Rhodobacter capsulatus.
    Rauhut R; Jäger A; Conrad C; Klug G
    Nucleic Acids Res; 1996 Apr; 24(7):1246-51. PubMed ID: 8614626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate structure requirements of the Pac1 ribonuclease from Schizosaccharmyces pombe.
    Rotondo G; Huang JY; Frendewey D
    RNA; 1997 Oct; 3(10):1182-93. PubMed ID: 9326493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single processing center models for human Dicer and bacterial RNase III.
    Zhang H; Kolb FA; Jaskiewicz L; Westhof E; Filipowicz W
    Cell; 2004 Jul; 118(1):57-68. PubMed ID: 15242644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double-stranded RNA-dependent RNase activity associated with human immunodeficiency virus type 1 reverse transcriptase.
    Ben-Artzi H; Zeelon E; Gorecki M; Panet A
    Proc Natl Acad Sci U S A; 1992 Feb; 89(3):927-31. PubMed ID: 1371014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein cofactor-dependent acquisition of novel catalytic activity by the RNase P ribonucleoprotein of E. coli.
    Cole KB; Dorit RL
    J Mol Biol; 2001 Apr; 307(5):1181-212. PubMed ID: 11292334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new alpha-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III.
    Leulliot N; Quevillon-Cheruel S; Graille M; van Tilbeurgh H; Leeper TC; Godin KS; Edwards TE; Sigurdsson ST; Rozenkrants N; Nagel RJ; Ares M; Varani G
    EMBO J; 2004 Jul; 23(13):2468-77. PubMed ID: 15192703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.