These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11734205)

  • 21. Molecular requirements for duplex recognition and cleavage by eukaryotic RNase III: discovery of an RNA-dependent DNA cleavage activity of yeast Rnt1p.
    Lamontagne B; Hannoush RN; Damha MJ; Abou Elela S
    J Mol Biol; 2004 Apr; 338(2):401-18. PubMed ID: 15066440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the sequence of the rne-dependent site in 3' processing of M1 RNA, the catalytic component of Escherichia coli RNase P.
    Sim S; Kim S; Lee Y
    FEBS Lett; 2001 Sep; 505(2):291-5. PubMed ID: 11566192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Important 2'-hydroxyl groups in model substrates for M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli.
    Perreault JP; Altman S
    J Mol Biol; 1992 Jul; 226(2):399-409. PubMed ID: 1379304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of FinP antisense RNA from F-like plasmids: the RNA-binding protein, FinO, protects FinP from ribonuclease E.
    Jerome LJ; van Biesen T; Frost LS
    J Mol Biol; 1999 Jan; 285(4):1457-73. PubMed ID: 9917389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical and genomic analysis of substrate recognition by the double-stranded RNA binding domain of yeast RNase III.
    Henras AK; Sam M; Hiley SL; Wu H; Hughes TR; Feigon J; Chanfreau GF
    RNA; 2005 Aug; 11(8):1225-37. PubMed ID: 15987808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutational analysis of the nuclease domain of Escherichia coli ribonuclease III. Identification of conserved acidic residues that are important for catalytic function in vitro.
    Sun W; Li G; Nicholson AW
    Biochemistry; 2004 Oct; 43(41):13054-62. PubMed ID: 15476399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA structure-dependent uncoupling of substrate recognition and cleavage by Escherichia coli ribonuclease III.
    Calin-Jageman I; Nicholson AW
    Nucleic Acids Res; 2003 May; 31(9):2381-92. PubMed ID: 12711683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of the gene encoding a type 1 RNase H with an N-terminal double-stranded RNA binding domain from a psychrotrophic bacterium.
    Tadokoro T; Chon H; Koga Y; Takano K; Kanaya S
    FEBS J; 2007 Jul; 274(14):3715-3727. PubMed ID: 17608717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 7S RNA, containing 5S ribosomal RNA and the termination stem, is a specific substrate for the two RNA processing enzymes RNase III and RNase E.
    Szeberényi J; Roy MK; Vaidya HC; Apirion D
    Biochemistry; 1984 Jun; 23(13):2952-7. PubMed ID: 6380579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Base substitutions at scissile bond sites are sufficient to alter RNA-binding and cleavage activity of RNase III.
    Kim K; Sim SH; Jeon CO; Lee Y; Lee K
    FEMS Microbiol Lett; 2011 Feb; 315(1):30-7. PubMed ID: 21133991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochemical Characterization of Mycobacterium smegmatis RnhC (MSMEG_4305), a Bifunctional Enzyme Composed of Autonomous N-Terminal Type I RNase H and C-Terminal Acid Phosphatase Domains.
    Jacewicz A; Shuman S
    J Bacteriol; 2015 Aug; 197(15):2489-98. PubMed ID: 25986906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic activation of multimeric RNase E and RNase G by 5'-monophosphorylated RNA.
    Jiang X; Belasco JG
    Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9211-6. PubMed ID: 15197283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One functional subunit is sufficient for catalytic activity and substrate specificity of Escherichia coli endoribonuclease III artificial heterodimers.
    Conrad C; Schmitt JG; Evguenieva-Hackenberg E; Klug G
    FEBS Lett; 2002 May; 518(1-3):93-6. PubMed ID: 11997024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane binding of Escherichia coli RNase E catalytic domain stabilizes protein structure and increases RNA substrate affinity.
    Murashko ON; Kaberdin VR; Lin-Chao S
    Proc Natl Acad Sci U S A; 2012 May; 109(18):7019-24. PubMed ID: 22509045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Requirements for cleavage by a modified RNase P of a small model substrate.
    Liu F; Altman S
    Nucleic Acids Res; 1996 Jul; 24(14):2690-6. PubMed ID: 8758997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of double-stranded-RNA-specific RNase III of Escherichia coli is lethal to Saccharomyces cerevisiae.
    Pines O; Yoon HJ; Inouye M
    J Bacteriol; 1988 Jul; 170(7):2989-93. PubMed ID: 3290193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of RNase HII substrate recognition using RNase HII-argonaute chimaeric enzymes from Pyrococcus furiosus.
    Kitamura S; Fujishima K; Sato A; Tsuchiya D; Tomita M; Kanai A
    Biochem J; 2010 Feb; 426(3):337-44. PubMed ID: 20047562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequence dependence of substrate recognition and cleavage by yeast RNase III.
    Lamontagne B; Ghazal G; Lebars I; Yoshizawa S; Fourmy D; Elela SA
    J Mol Biol; 2003 Apr; 327(5):985-1000. PubMed ID: 12662924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNase III autoregulation: structure and function of rncO, the posttranscriptional "operator".
    Matsunaga J; Simons EL; Simons RW
    RNA; 1996 Dec; 2(12):1228-40. PubMed ID: 8972772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Escherichia coli ribonuclease III cleavage sites.
    Robertson HD
    Cell; 1982 Oct; 30(3):669-72. PubMed ID: 6754088
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.