These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11734210)

  • 1. Tubulin and microtubule are potential targets for brain hexokinase binding.
    Wágner G; Kovács J; Löw P; Orosz F; Ovádi J
    FEBS Lett; 2001 Nov; 509(1):81-4. PubMed ID: 11734210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characteristics of hexokinase bound to the type a and type B sites of bovine brain mitochondria.
    de Cerqueira Cesar M; Wilson JE
    Arch Biochem Biophys; 2002 Jan; 397(1):106-12. PubMed ID: 11747316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic resonance studies on the interaction of metal-ion and nucleotide ligands with brain hexokinase.
    Jarori GK; Mehta A; Kasturi SR; Kenkare UW
    Eur J Biochem; 1984 Sep; 143(3):669-76. PubMed ID: 6090139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of brain mitochondria with microtubules reconstituted from brain tubulin and MAP2 or TAU.
    Jung D; Filliol D; Miehe M; Rendon A
    Cell Motil Cytoskeleton; 1993; 24(4):245-55. PubMed ID: 8097434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of non-catalytic ATP to human hexokinase I highlights the structural components for enzyme-membrane association control.
    Rosano C; Sabini E; Rizzi M; Deriu D; Murshudov G; Bianchi M; Serafini G; Magnani M; Bolognesi M
    Structure; 1999 Nov; 7(11):1427-37. PubMed ID: 10574795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane potential-dependent conformational changes in mitochondrially bound hexokinase of brain.
    Hashimoto M; Wilson JE
    Arch Biochem Biophys; 2000 Dec; 384(1):163-73. PubMed ID: 11147827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-specific p25 protein binds to tubulin and microtubules and induces aberrant microtubule assemblies at substoichiometric concentrations.
    Hlavanda E; Kovács J; Oláh J; Orosz F; Medzihradszky KF; Ovádi J
    Biochemistry; 2002 Jul; 41(27):8657-64. PubMed ID: 12093283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bull sperm 19S dynein polymerizes brain tubulin into microtubules.
    Eyer J; White D; Gagnon C
    Biochem Biophys Res Commun; 1987 Oct; 148(1):218-24. PubMed ID: 2960323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-induced formation of an associated complex between microtubules and neurofilaments.
    Runge MS; Laue TM; Yphantis DA; Lifsics MR; Saito A; Altin M; Reinke K; Williams RC
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1431-5. PubMed ID: 6940167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain hexokinase has no preexisting allosteric site for glucose 6-phosphate.
    Mehta A; Jarori GK; Kenkare UW
    J Biol Chem; 1988 Oct; 263(30):15492-7. PubMed ID: 3170594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of microtubule-phosphofructokinase complex: specific effects of MgATP and vinblastine.
    Vértessy BG; Kovács J; Löw P; Lehotzky A; Molnár A; Orosz F; Ovádi J
    Biochemistry; 1997 Feb; 36(8):2051-62. PubMed ID: 9047303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose 6-phosphate release of wild-type and mutant human brain hexokinases from mitochondria.
    Skaff DA; Kim CS; Tsai HJ; Honzatko RB; Fromm HJ
    J Biol Chem; 2005 Nov; 280(46):38403-9. PubMed ID: 16166083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functioning of mitochondria-bound hexokinase in rat brain in accordance with generation of ATP inside the organelle.
    Inui M; Ishibashi S
    J Biochem; 1979 May; 85(5):1151-6. PubMed ID: 447613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible regulation of the in vitro assembly of bovine brain tubulin by the bovine thioredoxin system.
    Khan IA; Ludueña RF
    Biochim Biophys Acta; 1991 Jan; 1076(2):289-97. PubMed ID: 1998728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimitotic antifungal compound benomyl inhibits brain microtubule polymerization and dynamics and cancer cell proliferation at mitosis, by binding to a novel site in tubulin.
    Gupta K; Bishop J; Peck A; Brown J; Wilson L; Panda D
    Biochemistry; 2004 Jun; 43(21):6645-55. PubMed ID: 15157098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of bovine brain microtubule assembly in vitro by stypoldione.
    O'Brien ET; Jacobs RS; Wilson L
    Mol Pharmacol; 1983 Nov; 24(3):493-9. PubMed ID: 6633509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substoichiometric binding of taxol suppresses microtubule dynamics.
    Derry WB; Wilson L; Jordan MA
    Biochemistry; 1995 Feb; 34(7):2203-11. PubMed ID: 7857932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization-dependent effects of toxic bivalent ions microtubule assembly and glycolysis.
    Liliom K; Wágner G; Pácz A; Cascante M; Kovács J; Ovádi J
    Eur J Biochem; 2000 Aug; 267(15):4731-9. PubMed ID: 10903506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The natural naphthoquinone plumbagin exhibits antiproliferative activity and disrupts the microtubule network through tubulin binding.
    Acharya BR; Bhattacharyya B; Chakrabarti G
    Biochemistry; 2008 Jul; 47(30):7838-45. PubMed ID: 18597479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique functional characteristics of the polymerization and MAP binding regulatory domains of plant tubulin.
    Hugdahl JD; Bokros CL; Hanesworth VR; Aalund GR; Morejohn LC
    Plant Cell; 1993 Sep; 5(9):1063-80. PubMed ID: 8104575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.