BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 11734406)

  • 1. Simulating tumour removal in neurosurgery.
    Radetzky A; Rudolph M
    Int J Med Inform; 2001 Dec; 64(2-3):461-72. PubMed ID: 11734406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ROBO-SIM: a simulator for minimally invasive neurosurgery using an active manipulator.
    Radetzky A; Rudolph M; Starkie S; Davies B; Auer LM
    Stud Health Technol Inform; 2000; 77():1165-9. PubMed ID: 11187505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual reality system for planning minimally invasive neurosurgery. Technical note.
    Stadie AT; Kockro RA; Reisch R; Tropine A; Boor S; Stoeter P; Perneczky A
    J Neurosurg; 2008 Feb; 108(2):382-94. PubMed ID: 18240940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimally invasive supratentorial neurosurgical approaches guided by Smartphone app and compass.
    Fernandes de Oliveira Santos B; de Araujo Paz D; Fernandes VM; Dos Santos JC; Chaddad-Neto FEA; Sousa ACS; Oliveira JLM
    Sci Rep; 2021 Mar; 11(1):6778. PubMed ID: 33762597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot-assisted procedures in pediatric neurosurgery.
    De Benedictis A; Trezza A; Carai A; Genovese E; Procaccini E; Messina R; Randi F; Cossu S; Esposito G; Palma P; Amante P; Rizzi M; Marras CE
    Neurosurg Focus; 2017 May; 42(5):E7. PubMed ID: 28463617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual endoscopy for planning and simulation of minimally invasive neurosurgery.
    Auer LM; Auer DP
    Neurosurgery; 1998 Sep; 43(3):529-37; discussion 537-48. PubMed ID: 9733308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of a self-developed planning and self-constructed navigation system on skull base surgery: 10 years experience.
    Caversaccio M; Langlotz F; Nolte LP; Häusler R
    Acta Otolaryngol; 2007 Apr; 127(4):403-7. PubMed ID: 17453461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-D image guidance for minimally invasive robotic coronary artery bypass.
    Chiu AM; Dey D; Drangova M; Boyd WD; Peters TM
    Heart Surg Forum; 2000; 3(3):224-31. PubMed ID: 11074977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Informatic surgery: the union of surgeon and machine.
    Lang MJ; Sutherland GR
    World Neurosurg; 2010 Jul; 74(1):118-20. PubMed ID: 21300000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robotics in neurosurgery: A literature review.
    Ahmed SI; Javed G; Mubeen B; Bareeqa SB; Rasheed H; Rehman A; Phulpoto MM; Samar SS; Aziz K
    J Pak Med Assoc; 2018 Feb; 68(2):258-263. PubMed ID: 29479103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-assisted neurosurgery system: Wayne State University hardware and software configuration.
    Zamorano L; Jiang Z; Kadi AM
    Comput Med Imaging Graph; 1994; 18(4):257-71. PubMed ID: 7923045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual Reality and Simulation in Neurosurgical Training.
    Bernardo A
    World Neurosurg; 2017 Oct; 106():1015-1029. PubMed ID: 28985656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced 3-dimensional planning in neurosurgery.
    Ferroli P; Tringali G; Acerbi F; Schiariti M; Broggi M; Aquino D; Broggi G
    Neurosurgery; 2013 Jan; 72 Suppl 1():54-62. PubMed ID: 23254813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurosurgical robotic system for brain tumor removal.
    Arata J; Tada Y; Kozuka H; Wada T; Saito Y; Ikedo N; Hayashi Y; Fujii M; Kajita Y; Mizuno M; Wakabayashi T; Yoshida J; Fujimoto H
    Int J Comput Assist Radiol Surg; 2011 May; 6(3):375-85. PubMed ID: 20625847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization and simulation techniques for surgical simulators using actual patient's data.
    Radetzky A; Nürnberger A
    Artif Intell Med; 2002 Nov; 26(3):255-79. PubMed ID: 12446081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Ultrasound-guided minimally invasive neurosurgery in treatment of cranial tumors: clinical study].
    Zhao P; Zhao Y; Zhang W; Zhang MZ; Zhao JZ
    Zhonghua Yi Xue Za Zhi; 2006 Jun; 86(23):1600-3. PubMed ID: 16854297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image-guided system with miniature robot for precise positioning and targeting in keyhole neurosurgery.
    Joskowicz L; Shamir R; Freiman M; Shoham M; Zehavi E; Umansky F; Shoshan Y
    Comput Aided Surg; 2006 Jul; 11(4):181-93. PubMed ID: 17038306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual reality simulation in neurosurgery: technologies and evolution.
    Chan S; Conti F; Salisbury K; Blevins NH
    Neurosurgery; 2013 Jan; 72 Suppl 1():154-64. PubMed ID: 23254804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual reality and augmented reality in the management of intracranial tumors: A review.
    Lee C; Wong GKC
    J Clin Neurosci; 2019 Apr; 62():14-20. PubMed ID: 30642663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Skull-Mounted Robot with a Compact and Lightweight Parallel Mechanism for Positioning in Minimally Invasive Neurosurgery.
    Li C; King NKK; Ren H
    Ann Biomed Eng; 2018 Oct; 46(10):1465-1478. PubMed ID: 29687238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.