BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 11734901)

  • 1. Ascidian and amphioxus Adh genes correlate functional and molecular features of the ADH family expansion during vertebrate evolution.
    Cañestro C; Albalat R; Hjelmqvist L; Godoy L; Jörnvall H; Gonzàlez-Duarte R
    J Mol Evol; 2002 Jan; 54(1):81-9. PubMed ID: 11734901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opossum alcohol dehydrogenases: Sequences, structures, phylogeny and evolution: evidence for the tandem location of ADH genes on opossum chromosome 5.
    Holmes RS
    Chem Biol Interact; 2009 Mar; 178(1-3):8-15. PubMed ID: 18848532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene duplications and the origins of vertebrate development.
    Holland PW; Garcia-Fernàndez J; Williams NA; Sidow A
    Dev Suppl; 1994; ():125-33. PubMed ID: 7579513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and developmental expression of the ascidian TRP gene: insights into the evolution of pigment cell-specific gene expression.
    Sato S; Toyoda R; Katsuyama Y; Saiga H; Numakunai T; Ikeo K; Gojobori T; Yajima I; Yamamoto H
    Dev Dyn; 1999 Jul; 215(3):225-37. PubMed ID: 10398533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of CUT class homeobox genes: insights from the genome of the amphioxus, Branchiostoma floridae.
    Takatori N; Saiga H
    Int J Dev Biol; 2008; 52(7):969-77. PubMed ID: 18956327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene duplication, co-option and recruitment during the origin of the vertebrate brain from the invertebrate chordate brain.
    Holland LZ; Short S
    Brain Behav Evol; 2008; 72(2):91-105. PubMed ID: 18836256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The amphioxus Hairy family: differential fate after duplication.
    Minguillón C; Jiménez-Delgado S; Panopoulou G; Garcia-Fernàndez J
    Development; 2003 Dec; 130(24):5903-14. PubMed ID: 14561632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic dating and characterization of gene duplications in vertebrates: the cartilaginous fish reference.
    Robinson-Rechavi M; Boussau B; Laudet V
    Mol Biol Evol; 2004 Mar; 21(3):580-6. PubMed ID: 14694077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The globin gene family of the cephalochordate amphioxus: implications for chordate globin evolution.
    Ebner B; Panopoulou G; Vinogradov SN; Kiger L; Marden MC; Burmester T; Hankeln T
    BMC Evol Biol; 2010 Nov; 10():370. PubMed ID: 21118516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fgfrl1, a fibroblast growth factor receptor-like gene, is found in the cephalochordate Branchiostoma floridae but not in the urochordate Ciona intestinalis.
    Beyeler M; Trueb B
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Sep; 145(1):43-9. PubMed ID: 16887372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of en bloc duplication in vertebrate genomes.
    Abi-Rached L; Gilles A; Shiina T; Pontarotti P; Inoko H
    Nat Genet; 2002 May; 31(1):100-5. PubMed ID: 11967531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes.
    Panopoulou G; Hennig S; Groth D; Krause A; Poustka AJ; Herwig R; Vingron M; Lehrach H
    Genome Res; 2003 Jun; 13(6A):1056-66. PubMed ID: 12799346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic insertion-deletion of introns in deuterostome EF-1alpha genes.
    Wada H; Kobayashi M; Sato R; Satoh N; Miyasaka H; Shirayama Y
    J Mol Evol; 2002 Jan; 54(1):118-28. PubMed ID: 11734905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of novel GPCR gene coding locus in amphioxus genome: gene structure, expression, and phylogenetic analysis with implications for its involvement in chemoreception.
    Satoh G
    Genesis; 2005 Feb; 41(2):47-57. PubMed ID: 15682401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic phylogenomic evidence of en bloc duplication of the ancestral 8p11.21-8p21.3-like region.
    Vienne A; Rasmussen J; Abi-Rached L; Pontarotti P; Gilles A
    Mol Biol Evol; 2003 Aug; 20(8):1290-8. PubMed ID: 12777526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of microRNAs in cephalochordates reveals a correlation between microRNA repertoire homology and morphological similarity in chordate evolution.
    Dai Z; Chen Z; Ye H; Zhou L; Cao L; Wang Y; Peng S; Chen L
    Evol Dev; 2009; 11(1):41-9. PubMed ID: 19196332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minisatellite instability at the Adh locus reveals somatic polymorphism in amphioxus.
    Cañestro C; Gonzàlez-Duarte R; Albalat R
    Nucleic Acids Res; 2002 Jul; 30(13):2871-6. PubMed ID: 12087171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for the evolution of tenascin and fibronectin early in the chordate lineage.
    Tucker RP; Chiquet-Ehrismann R
    Int J Biochem Cell Biol; 2009 Feb; 41(2):424-34. PubMed ID: 18761101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization, expression and localization of S-adenosylhomocysteine hydrolase from amphioxus Branchiostoma belcheri tsingtaunese.
    Wang Y; Zhao B; Zhang S; Qu X
    Biosci Rep; 2008 Jun; 28(3):135-44. PubMed ID: 18532926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two classic cadherin-related molecules with no cadherin extracellular repeats in the cephalochordate amphioxus: distinct adhesive specificities and possible involvement in the development of multicell-layered structures.
    Oda H; Akiyama-Oda Y; Zhang S
    J Cell Sci; 2004 Jun; 117(Pt 13):2757-67. PubMed ID: 15150317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.