BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11735000)

  • 1. Neo-centromere formation on a 2.6 Mb mini-chromosome in DT40 cells.
    Shen MH; Ross A; Yang J; de las Heras JI; Cooke H
    Chromosoma; 2001 Nov; 110(6):421-9. PubMed ID: 11735000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA.
    Ohzeki J; Nakano M; Okada T; Masumoto H
    J Cell Biol; 2002 Dec; 159(5):765-75. PubMed ID: 12460987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human artificial chromosomes containing chromosome 17 alphoid DNA maintain an active centromere in murine cells but are not stable.
    Alazami AM; Mejía JE; Monaco ZL
    Genomics; 2004 May; 83(5):844-51. PubMed ID: 15081114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres.
    Alonso A; Mahmood R; Li S; Cheung F; Yoda K; Warburton PE
    Hum Mol Genet; 2003 Oct; 12(20):2711-21. PubMed ID: 12928482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localisation of centromeric proteins to a fraction of mouse minor satellite DNA on a mini-chromosome in human, mouse and chicken cells.
    Zeng K; de las Heras JI; Ross A; Yang J; Cooke H; Shen MH
    Chromosoma; 2004 Sep; 113(2):84-91. PubMed ID: 15300445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere.
    Okamoto Y; Nakano M; Ohzeki J; Larionov V; Masumoto H
    EMBO J; 2007 Mar; 26(5):1279-91. PubMed ID: 17318187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of repeated sequences in the centromeric region of the human Y chromosome.
    Tyler-Smith C
    Development; 1987; 101 Suppl():93-100. PubMed ID: 3503726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of DNA sequences required for human centromere function through an analysis of rearranged Y chromosomes.
    Tyler-Smith C; Oakey RJ; Larin Z; Fisher RB; Crocker M; Affara NA; Ferguson-Smith MA; Muenke M; Zuffardi O; Jobling MA
    Nat Genet; 1993 Dec; 5(4):368-75. PubMed ID: 8298645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New types of mouse centromeric satellite DNAs.
    Kuznetsova IS; Prusov AN; Enukashvily NI; Podgornaya OI
    Chromosome Res; 2005; 13(1):9-25. PubMed ID: 15791408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the existence of satellite DNA-containing connection between metaphase chromosomes.
    Kuznetsova IS; Enukashvily NI; Noniashvili EM; Shatrova AN; Aksenov ND; Zenin VV; Dyban AP; Podgornaya OI
    J Cell Biochem; 2007 Jul; 101(4):1046-61. PubMed ID: 17340617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts.
    Kuroiwa Y; Tomizuka K; Shinohara T; Kazuki Y; Yoshida H; Ohguma A; Yamamoto T; Tanaka S; Oshimura M; Ishida I
    Nat Biotechnol; 2000 Oct; 18(10):1086-90. PubMed ID: 11017048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The identification of mouse cloned SFA DNA].
    Yi N; Wu WQ; Ni ZM; Shi LJ
    Shi Yan Sheng Wu Xue Bao; 2002 Dec; 35(4):319-23. PubMed ID: 15346991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assay of centromere function using a human artificial chromosome.
    Masumoto H; Ikeno M; Nakano M; Okazaki T; Grimes B; Cooke H; Suzuki N
    Chromosoma; 1998 Dec; 107(6-7):406-16. PubMed ID: 9914372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of alphoid DNA variation and kinetochore size in human chromosome 21: evidence against pathological significance of alphoid satellite DNA diminutions.
    Marzais B; Vorsanova SG; Roizes G; Yurov YB
    Tsitol Genet; 1999; 33(1):25-31. PubMed ID: 10330695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakpoint analysis of the pericentric inversion distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (Pan troglodytes).
    Kehrer-Sawatzki H; Sandig C; Chuzhanova N; Goidts V; Szamalek JM; Tänzer S; Müller S; Platzer M; Cooper DN; Hameister H
    Hum Mutat; 2005 Jan; 25(1):45-55. PubMed ID: 15580561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA.
    Martins C; Ferreira IA; Oliveira C; Foresti F; Galetti PM
    Genetica; 2006 May; 127(1-3):133-41. PubMed ID: 16850219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic assembly of centromeric chromatin at ectopic alpha-satellite sites on human chromosomes.
    Nakano M; Okamoto Y; Ohzeki J; Masumoto H
    J Cell Sci; 2003 Oct; 116(Pt 19):4021-34. PubMed ID: 12953060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of chimerism after allogeneic stem cell transplantation by real-time polymerase chain reaction with single nucleotide polymorphisms, standard tandem repeats, and Y-chromosome-specific sequences.
    Koldehoff M; Steckel NK; Hlinka M; Beelen DW; Elmaagacli AH
    Am J Hematol; 2006 Oct; 81(10):735-46. PubMed ID: 16838323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Centromere inactivation on a neo-Y fusion chromosome in threespine stickleback fish.
    Cech JN; Peichel CL
    Chromosome Res; 2016 Dec; 24(4):437-450. PubMed ID: 27553478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mouse Y-specific repeats isolated by whole chromosome representational difference analysis.
    Navin A; Prekeris R; Lisitsyn NA; Sonti MM; Grieco DA; Narayanswami S; Lander ES; Simpson EM
    Genomics; 1996 Sep; 36(2):349-53. PubMed ID: 8812464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.