BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 11735388)

  • 1. Dynamics of excitation energy transfer in the LH1 and LH2 light-harvesting complexes of photosynthetic bacteria.
    van Grondelle R; Novoderezhkin V
    Biochemistry; 2001 Dec; 40(50):15057-68. PubMed ID: 11735388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disordered exciton model for the core light-harvesting antenna of Rhodopseudomonas viridis.
    Novoderezhkin V; Monshouwer R; van Grondelle R
    Biophys J; 1999 Aug; 77(2):666-81. PubMed ID: 10423416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopy of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila: diagonal disorder, intercomplex heterogeneity, spectral diffusion, and energy transfer in the B800 band.
    van Oijen AM; Ketelaars M; Köhler J; Aartsma TJ; Schmidt J
    Biophys J; 2000 Mar; 78(3):1570-7. PubMed ID: 10692341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-harvesting mechanisms in purple photosynthetic bacteria.
    Isaacs NW; Cogdell RJ; Freer AA; Prince SM
    Curr Opin Struct Biol; 1995 Dec; 5(6):794-7. PubMed ID: 8749368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic modeling of exciton migration in photosynthetic systems. 3. Application of genetic algorithms to simulations of excitation dynamics in three-dimensional photosystem I core antenna/reaction center complexes.
    Trinkunas G; Holzwarth AR
    Biophys J; 1996 Jul; 71(1):351-64. PubMed ID: 8804618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Relationship between the Spatial Arrangement of Pigments and Exciton Transition Moments in Photosynthetic Light-Harvesting Complexes.
    Pishchalnikov RY; Chesalin DD; Razjivin AP
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transfer in spectrally inhomogeneous light-harvesting pigment-protein complexes of purple bacteria.
    Hess S; Akesson E; Cogdell RJ; Pullerits T; Sundström V
    Biophys J; 1995 Dec; 69(6):2211-25. PubMed ID: 8599629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of hybrid photosynthetic units using peripheral and core antennae from two different species of photosynthetic bacteria: detection of the energy transfer from bacteriochlorophyll a in LH2 to bacteriochlorophyll b in LH1.
    Fujii R; Shimonaka S; Uchida N; Gardiner AT; Cogdell RJ; Sugisaki M; Hashimoto H
    Photosynth Res; 2008; 95(2-3):327-37. PubMed ID: 17926141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ground-State Electronic Structure of RC-LH1 and LH2 Pigment Assemblies of Purple Bacteria via the EBF-MO Method.
    Shrestha K; Jakubikova E
    J Phys Chem A; 2015 Aug; 119(33):8934-43. PubMed ID: 26215074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synthesis and assembly of functional high and low light LH2 antenna complexes from Rhodopseudomonas palustris in Rhodobacter sphaeroides.
    Fowler GJ; Hunter CN
    J Biol Chem; 1996 Jun; 271(23):13356-61. PubMed ID: 8662765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined topographic, spectroscopic, and model analyses of inhomogeneous energetic coupling of linear light harvesting complex II aggregates in native photosynthetic membranes.
    Rajapaksha SP; He Y; Lu HP
    Phys Chem Chem Phys; 2013 Apr; 15(15):5636-47. PubMed ID: 23474628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transfer in photosynthesis: experimental insights and quantitative models.
    van Grondelle R; Novoderezhkin VI
    Phys Chem Chem Phys; 2006 Feb; 8(7):793-807. PubMed ID: 16482320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components.
    Todd JB; Parkes-Loach PS; Leykam JF; Loach PA
    Biochemistry; 1998 Dec; 37(50):17458-68. PubMed ID: 9860861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast exciton-exciton coherent transfer in molecular aggregates and its application to light-harvesting systems.
    Hyeon-Deuk K; Tanimura Y; Cho M
    J Chem Phys; 2007 Aug; 127(7):075101. PubMed ID: 17718632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of sub-picosecond equilibration of excitation energy in the light-harvesting antenna of Rhodospirillum rubrum.
    Visser HM; Somsen OJ; van Mourik F; Lin S; van Stokkum IH; van Grondelle R
    Biophys J; 1995 Sep; 69(3):1083-99. PubMed ID: 8519962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton delocalization in the antenna of purple bacteria: exciton spectrum calculations using Z-ray data and experimental site inhomogeneity.
    Dracheva TV; Novoderezhkin VI; Razjivin AP
    FEBS Lett; 1996 May; 387(1):81-4. PubMed ID: 8654573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structural basis of light-harvesting in purple bacteria.
    Cogdell RJ; Isaacs NW; Freer AA; Howard TD; Gardiner AT; Prince SM; Papiz MZ
    FEBS Lett; 2003 Nov; 555(1):35-9. PubMed ID: 14630315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities.
    Niedzwiedzki DM; Gardiner AT; Blankenship RE; Cogdell RJ
    Photosynth Res; 2018 Sep; 137(3):389-402. PubMed ID: 29725994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Modeling of Exciton-Bath Hamiltonians for Light Harvesting 2 and Light Harvesting 3 Complexes of Purple Photosynthetic Bacteria at Room Temperature.
    Montemayor D; Rivera E; Jang SJ
    J Phys Chem B; 2018 Apr; 122(14):3815-3825. PubMed ID: 29533664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation.
    Oka H
    Sci Rep; 2016 May; 6():26058. PubMed ID: 27173144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.