BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 11735403)

  • 1. Evidence of powerful substrate electric fields in DNA photolyase: implications for thymidine dimer repair.
    MacFarlane AW; Stanley RJ
    Biochemistry; 2001 Dec; 40(50):15203-14. PubMed ID: 11735403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cis-syn thymidine dimer repair by DNA photolyase in real time.
    MacFarlane AW; Stanley RJ
    Biochemistry; 2003 Jul; 42(28):8558-68. PubMed ID: 12859203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of distinct α-helical rearrangements of cyclobutane pyrimidine dimer photolyase upon substrate binding by Fourier transform infrared spectroscopy.
    Wijaya IM; Zhang Y; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kandori H
    Biochemistry; 2013 Feb; 52(6):1019-27. PubMed ID: 23331252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photolyase: Dynamics and electron-transfer mechanisms of DNA repair.
    Zhang M; Wang L; Zhong D
    Arch Biochem Biophys; 2017 Oct; 632():158-174. PubMed ID: 28802828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase.
    Weber S
    Biochim Biophys Acta; 2005 Feb; 1707(1):1-23. PubMed ID: 15721603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate binding to DNA photolyase studied by electron paramagnetic resonance spectroscopy.
    Weber S; Richter G; Schleicher E; Bacher A; Möbius K; Kay CW
    Biophys J; 2001 Aug; 81(2):1195-204. PubMed ID: 11463661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Similarities and differences between cyclobutane pyrimidine dimer photolyase and (6-4) photolyase as revealed by resonance Raman spectroscopy: Electron transfer from the FAD cofactor to ultraviolet-damaged DNA.
    Li J; Uchida T; Todo T; Kitagawa T
    J Biol Chem; 2006 Sep; 281(35):25551-9. PubMed ID: 16816385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavin adenine dinucleotide chromophore charge controls the conformation of cyclobutane pyrimidine dimer photolyase α-helices.
    Wijaya IM; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kennis JT; Mathes T; Kandori H
    Biochemistry; 2014 Sep; 53(37):5864-75. PubMed ID: 25152314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclobutylpyrimidine dimer base flipping by DNA photolyase.
    Christine KS; MacFarlane AW; Yang K; Stanley RJ
    J Biol Chem; 2002 Oct; 277(41):38339-44. PubMed ID: 12169694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA repair mechanism by photolyase: electron transfer path from the photolyase catalytic cofactor FADH(-) to DNA thymine dimer.
    Medvedev D; Stuchebrukhov AA
    J Theor Biol; 2001 May; 210(2):237-48. PubMed ID: 11371177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of DNA photolyase from Escherichia coli.
    Park HW; Kim ST; Sancar A; Deisenhofer J
    Science; 1995 Jun; 268(5219):1866-72. PubMed ID: 7604260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic determination of the functional state in photolyase and the implication for cryptochrome.
    Liu Z; Zhang M; Guo X; Tan C; Li J; Wang L; Sancar A; Zhong D
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):12972-7. PubMed ID: 23882072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of an intermediate tryptophanyl radical in W306F mutant DNA photolyase from Escherichia coli supports electron hopping along the triple tryptophan chain.
    Byrdin M; Villette S; Eker AP; Brettel K
    Biochemistry; 2007 Sep; 46(35):10072-7. PubMed ID: 17696363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissection of the triple tryptophan electron transfer chain in Escherichia coli DNA photolyase: Trp382 is the primary donor in photoactivation.
    Byrdin M; Eker AP; Vos MH; Brettel K
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8676-81. PubMed ID: 12835419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Ethenoadenine FAD Analog Accelerates UV Dimer Repair by DNA Photolyase.
    Narayanan M; Singh VR; Kodali G; Moravcevic K; Morris KJ; Stanley RJ
    Photochem Photobiol; 2017 Jan; 93(1):343-354. PubMed ID: 27935052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically monitoring DNA repair by photolyase.
    DeRosa MC; Sancar A; Barton JK
    Proc Natl Acad Sci U S A; 2005 Aug; 102(31):10788-92. PubMed ID: 16043698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathways of electron transfer in Escherichia coli DNA photolyase: Trp306 to FADH.
    Cheung MS; Daizadeh I; Stuchebrukhov AA; Heelis PF
    Biophys J; 1999 Mar; 76(3):1241-9. PubMed ID: 10049308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of cyclobutane thymine dimer splitting by DNA photolyase directly monitored in the UV.
    Thiagarajan V; Byrdin M; Eker AP; Müller P; Brettel K
    Proc Natl Acad Sci U S A; 2011 Jun; 108(23):9402-7. PubMed ID: 21606324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate binding modulates the reduction potential of DNA photolyase.
    Gindt YM; Schelvis JP; Thoren KL; Huang TH
    J Am Chem Soc; 2005 Aug; 127(30):10472-3. PubMed ID: 16045318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coexistence of Different Electron-Transfer Mechanisms in the DNA Repair Process by Photolyase.
    Lee W; Kodali G; Stanley RJ; Matsika S
    Chemistry; 2016 Aug; 22(32):11371-81. PubMed ID: 27362906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.