BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1173574)

  • 1. [Leucémogénése et régénération du systémé lymphoïde chez des hybrides f1 (c3h x akr/t1ald) restaurés par des cellules médullaires et thymiques parentales].
    Legrand E; Kressmann MC; Duplan JF
    Int J Cancer; 1975 Apr; 15(4):572-87. PubMed ID: 1173574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Influence of allogeneic thymocytes on radioleukemogenesis in AKR-T1ALD mice].
    Legrand E; Sankar-Mistry P; Kressmann MC
    Biomedicine; 1975 Jul; 22(4):303-10. PubMed ID: 776241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of BNU treatment on leukaemogenesis in lethally irradiated AKR mice restored with bone-marrow and spleen cells.
    Shisa H; Legrand E; Daculsi R
    Int J Cancer; 1977 Apr; 19(4):531-7. PubMed ID: 66211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitive proliferation in the hematopoietic tissues of irradiated hybrid mice engrafted with parental bone marrow and spleen.
    Muramatsu S; Monnot P; Duplan JF
    Exp Hematol; 1976 Jul; 4(4):188-200. PubMed ID: 782893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of thymic cells by mouse spleen and bone marrow.
    Shisa H; Daculsi R; Duplan JF
    Biomedicine; 1977 Mar; 27(2):73-5. PubMed ID: 861354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of serum thymic factor (FTS) on radiation-induced leukaemogenesis in thymectomized AKR mice.
    Legrand E; Daculsi R; Bach JF; Duplan JF
    Int J Cancer; 1981 Jul; 28(1):59-64. PubMed ID: 7198101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional and phenotypic analyses of thymic low density adherent cells from murine bone marrow chimeras--influence on thymocyte differentiation.
    Wambua PP
    Hokkaido Igaku Zasshi; 1992 May; 67(3):376-97. PubMed ID: 1511960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of Mls-reactive T cells in H-2-compatible but Mls-incompatible bone marrow chimeras.
    Yoshikai Y; Ogimoto M; Matsumoto K; Sakumoto M; Matsuzaki G; Nomoto K
    Eur J Immunol; 1989 Jun; 19(6):1009-13. PubMed ID: 2502418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analyses of thymocyte and thymic low-density adherent cell functions.
    Wambua PP; Iwabuchi K; Iwabuchi C; Ogasawara K; Itoh Y; Arase H; Kajiwara M; Gotohda T; Kajino K; Good RA
    Microbiol Immunol; 1994; 38(11):879-90. PubMed ID: 7898387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic resistance to marrow transplantation as a leukemia defense mechanism.
    Gallagher MT; Lotzová E; Trentin JJ
    Biomedicine; 1976 Feb; 25(1):1-3. PubMed ID: 786397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular events during radiation-induced thymic leukemogenesis in mice: abnormal T cell differentiation in the thymus and defect of thymocyte precursors in the bone marrow after split-dose irradiation.
    Muto M; Kubo E; Sado T
    J Immunol; 1985 Mar; 134(3):2026-31. PubMed ID: 3871460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone marrow-derived cells are essential for intrathymic deletion of self-reactive T cells in both the host- and donor-derived thymocytes of fully allogeneic bone marrow chimeras.
    Yoshikai Y; Ogimoto M; Matsuzaki G; Nomoto K
    J Immunol; 1990 Jul; 145(2):505-9. PubMed ID: 2114441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of lymphoid tissues under the influence of a subclinical level of graft versus host reaction induced by bone marrow T cells or splenic T cell subsets.
    Hirano M; Arase H; Arase-Fukushi N; Ogasawara K; Iwabuchi K; Miyazaki T; Good RA; Onoé K
    Cell Immunol; 1993 Oct; 151(1):118-32. PubMed ID: 8402923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presence of prelymphoma cells in the bone marrow of the lymphomagenic virus-treated AKR mouse.
    Takeuchi H; Kato A; Hays EF
    Cancer Res; 1984 Mar; 44(3):1008-11. PubMed ID: 6198077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similarity and difference in the mechanisms of neonatally induced tolerance and cyclophosphamide-induced tolerance in mice.
    Eto M; Mayumi H; Nishimura Y; Maeda T; Yoshikai Y; Nomoto K
    J Immunol; 1991 Oct; 147(8):2439-46. PubMed ID: 1918974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of self-reactive T cells in the donor-derived T cells but not in the host-derived T cells in fully allogeneic radiation chimeras. Mls-reactive T cells in allogeneic radiation chimeras.
    Ogimoto M; Yoshikai Y; Matsuzaki G; Ohga S; Matsumoto K; Nomoto K
    Thymus; 1991 Feb; 17(1):11-22. PubMed ID: 1901675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thymic control in expression of natural killer activity in AKR and C57BL/6 mice.
    Vaillier D; Legrand E; Labat V; Duplan JF
    Ann Immunol (Paris); 1984; 135D(1):1-12. PubMed ID: 6385814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of prothymocytes in radiation-induced leukemogenesis in C57BL/Rij mice.
    van Bekkum DW; Boersma WJ; Eliason JF; Knaan S
    Leuk Res; 1984; 8(3):461-71. PubMed ID: 6379312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defect of erythropoiesis in non-leukaemic AKR mice.
    Legrand E; Duplan JF
    Cell Tissue Kinet; 1978 May; 11(3):251-64. PubMed ID: 657233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of the progenitors for thymic T cells in various organs.
    Katsura Y; Kina T; Takaoki Y; Nishikawa S
    Eur J Immunol; 1988 Jun; 18(6):889-95. PubMed ID: 3289952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.