These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 11735984)
1. "Strange" Fermi processes and power-law nonthermal tails from a self-consistent fractional kinetic equation. Milovanov AV; Zelenyi LM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):052101. PubMed ID: 11735984 [TBL] [Abstract][Full Text] [Related]
2. Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: large-scale behavior of the turbulent transport coefficient. Milovanov AV Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):047301. PubMed ID: 11308983 [TBL] [Abstract][Full Text] [Related]
3. Fractional Transport in Strongly Turbulent Plasmas. Isliker H; Vlahos L; Constantinescu D Phys Rev Lett; 2017 Jul; 119(4):045101. PubMed ID: 29341784 [TBL] [Abstract][Full Text] [Related]
4. Rectified brownian transport in corrugated channels: Fractional brownian motion and Lévy flights. Ai BQ; Shao ZG; Zhong WR J Chem Phys; 2012 Nov; 137(17):174101. PubMed ID: 23145711 [TBL] [Abstract][Full Text] [Related]
5. Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. del-Castillo-Negrete D; Carreras BA; Lynch VE Phys Rev Lett; 2003 Jul; 91(1):018302. PubMed ID: 12906582 [TBL] [Abstract][Full Text] [Related]
6. Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights. Chechkin AV; Gonchar VY; Gorenflo R; Korabel N; Sokolov IM Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021111. PubMed ID: 18850790 [TBL] [Abstract][Full Text] [Related]
7. Realization of Lévy walks as Markovian stochastic processes. Lubashevsky I; Friedrich R; Heuer A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011110. PubMed ID: 19257004 [TBL] [Abstract][Full Text] [Related]
8. Space-fractional advection-diffusion and reflective boundary condition. Krepysheva N; Di Pietro L; Néel MC Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021104. PubMed ID: 16605326 [TBL] [Abstract][Full Text] [Related]
9. Stickiness in a bouncer model: A slowing mechanism for Fermi acceleration. Livorati AL; Kroetz T; Dettmann CP; Caldas IL; Leonel ED Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036203. PubMed ID: 23030993 [TBL] [Abstract][Full Text] [Related]
10. Fractional Langevin equation. Lutz E Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051106. PubMed ID: 11735899 [TBL] [Abstract][Full Text] [Related]
11. Do strange kinetics imply unusual thermodynamics? Sokolov IM; Klafter J; Blumen A Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021107. PubMed ID: 11497562 [TBL] [Abstract][Full Text] [Related]
12. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Cartea A; del-Castillo-Negrete D Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041105. PubMed ID: 17994934 [TBL] [Abstract][Full Text] [Related]
13. Kinetic equation of linear fractional stable motion and applications to modeling the scaling of intermittent bursts. Watkins NW; Credgington D; Sanchez R; Rosenberg SJ; Chapman SC Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041124. PubMed ID: 19518190 [TBL] [Abstract][Full Text] [Related]
14. Continuous-time multidimensional Markovian description of Lévy walks. Lubashevsky I; Friedrich R; Heuer A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031148. PubMed ID: 19905103 [TBL] [Abstract][Full Text] [Related]
15. A speculative study of 23-order fractional Laplacian modeling of turbulence: some thoughts and conjectures. Chen W Chaos; 2006 Jun; 16(2):023126. PubMed ID: 16822029 [TBL] [Abstract][Full Text] [Related]
16. Chaotic advection near a three-vortex collapse. Leoncini X; Kuznetsov L; Zaslavsky GM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036224. PubMed ID: 11308758 [TBL] [Abstract][Full Text] [Related]
17. Turbulent Energization of Electron Power Law Tails during Magnetic Reconnection. Lapenta G; Berchem J; Alaoui ME; Walker R Phys Rev Lett; 2020 Nov; 125(22):225101. PubMed ID: 33315458 [TBL] [Abstract][Full Text] [Related]
18. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion. Cushman JH; O'Malley D; Park M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995 [TBL] [Abstract][Full Text] [Related]
19. Quantum Maps with Memory from Generalized Lindblad Equation. Tarasov VE Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33924949 [TBL] [Abstract][Full Text] [Related]
20. Incorporating sweeps and ejections into Lagrangian stochastic models of spore trajectories within plant canopy turbulence: modeled contact distributions are heavy-tailed. Reynolds AM Phytopathology; 2012 Nov; 102(11):1026-33. PubMed ID: 23046208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]