These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11736060)

  • 1. Stability of Turing patterns in the Brusselator model.
    Peña B; Pérez-García C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056213. PubMed ID: 11736060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transverse instabilities in chemical Turing patterns of stripes.
    Peña B; Pérez-García C; Sanz-Anchelergues A; Míguez DG; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056206. PubMed ID: 14682870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable squares and other oscillatory turing patterns in a reaction-diffusion model.
    Yang L; Zhabotinsky AM; Epstein IR
    Phys Rev Lett; 2004 May; 92(19):198303. PubMed ID: 15169455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stripe-hexagon competition in forced pattern-forming systems with broken up-down symmetry.
    Peter R; Hilt M; Ziebert F; Bammert J; Erlenkämper C; Lorscheid N; Weitenberg C; Winter A; Hammele M; Zimmermann W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046212. PubMed ID: 15903775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turing pattern formation in the Brusselator system with nonlinear diffusion.
    Gambino G; Lombardo MC; Sammartino M; Sciacca V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042925. PubMed ID: 24229267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turing pattern dynamics in an activator-inhibitor system with superdiffusion.
    Zhang L; Tian C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062915. PubMed ID: 25615172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of hexagonal patterns in Bénard-Marangoni convection.
    Echebarria B; Pérez-García C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066307. PubMed ID: 11415227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model.
    Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turing Pattern Formation in a Semiarid Vegetation Model with Fractional-in-Space Diffusion.
    Tian C
    Bull Math Biol; 2015 Nov; 77(11):2072-85. PubMed ID: 26511752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turing patterns beyond hexagons and stripes.
    Yang L; Dolnik M; Zhabotinsky AM; Epstein IR
    Chaos; 2006 Sep; 16(3):037114. PubMed ID: 17014248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern analysis in a benthic bacteria-nutrient system.
    Wetzel D
    Math Biosci Eng; 2016 Apr; 13(2):303-32. PubMed ID: 27105985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turing patterns in three dimensions.
    Shoji H; Yamada K; Ueyama D; Ohta T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046212. PubMed ID: 17500983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic Turing patterns in the Brusselator model.
    Biancalani T; Fanelli D; Di Patti F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046215. PubMed ID: 20481815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turing pattern formation in fractional activator-inhibitor systems.
    Henry BI; Langlands TA; Wearne SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026101. PubMed ID: 16196638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Turing patterns to chimera states in the 2D Brusselator model.
    Provata A
    Chaos; 2023 Mar; 33(3):033133. PubMed ID: 37003796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tristability between stripes, up-hexagons, and down-hexagons and snaking bifurcation branches of spatial connections between up- and down-hexagons.
    Wetzel D
    Phys Rev E; 2018 Jun; 97(6-1):062221. PubMed ID: 30011496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superlattice patterns and spatial instability induced by delay feedback.
    Hu HX; Li QS; Ji L
    Phys Chem Chem Phys; 2008 Jan; 10(3):438-41. PubMed ID: 18174985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eckhaus selection: The mechanism of pattern persistence in a reaction-diffusion system.
    Ledesma-Durán A; Ortiz-Durán EA; Aragón JL; Santamaría-Holek I
    Phys Rev E; 2020 Sep; 102(3-1):032214. PubMed ID: 33076036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of fronts separating domains with different symmetries in hydrodynamical instabilities.
    Herrero H; Perez-Garcia C; Bestehorn M
    Chaos; 1994 Mar; 4(1):15-20. PubMed ID: 12780081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local control of globally competing patterns in coupled Swift-Hohenberg equations.
    Becker M; Frenzel T; Niedermayer T; Reichelt S; Mielke A; Bär M
    Chaos; 2018 Apr; 28(4):043121. PubMed ID: 31906656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.