These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 11736245)
1. Complex-temperature phase diagrams for the q-state Potts model on self-dual families of graphs and the nature of the q-->infinity limit. Chang SC; Shrock R Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066116. PubMed ID: 11736245 [TBL] [Abstract][Full Text] [Related]
2. Exact T=0 partition functions for Potts antiferromagnets on sections of the simple cubic lattice. Salas J; Shrock R Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011111. PubMed ID: 11461229 [TBL] [Abstract][Full Text] [Related]
3. Density of states, Potts zeros, and Fisher zeros of the Q-state Potts model for continuous Q. Kim SY; Creswick RJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066107. PubMed ID: 11415173 [TBL] [Abstract][Full Text] [Related]
4. Ground-state entropy of the potts antiferromagnet with next-nearest-neighbor spin-spin couplings on strips of the square lattice. Chang SC; Shrock R Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):4650-64. PubMed ID: 11089004 [TBL] [Abstract][Full Text] [Related]
5. Critical temperatures of the three- and four-state Potts models on the kagome lattice. Baek SK; Mäkelä H; Minnhagen P; Kim BJ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061104. PubMed ID: 21797299 [TBL] [Abstract][Full Text] [Related]
6. Yang-Lee zeros of the two- and three-state Potts model defined on phi3 Feynman diagrams. de Albuquerque LC; Dalmazi D Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066108. PubMed ID: 16241305 [TBL] [Abstract][Full Text] [Related]
7. Disorder-induced rounding of the phase transition in the large-q-state Potts model. Mercaldo MT; Anglès D'Auriac JC; Iglói F Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056112. PubMed ID: 15244888 [TBL] [Abstract][Full Text] [Related]
8. Locally self-similar phase diagram of the disordered Potts model on the hierarchical lattice. Anglès d'Auriac JC; Iglói F Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022103. PubMed ID: 23496456 [TBL] [Abstract][Full Text] [Related]
9. Density of the Fisher zeros for the three-state and four-state Potts models. Kim SY Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016110. PubMed ID: 15324132 [TBL] [Abstract][Full Text] [Related]
10. Phase diagram and critical exponents of a Potts gauge glass. Jacobsen JL; Picco M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026113. PubMed ID: 11863593 [TBL] [Abstract][Full Text] [Related]
11. Ground-state degeneracy of Potts antiferromagnets on two-dimensional lattices: approach using infinite cyclic strip graphs. Shrock R; Tsai SH Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3512-5. PubMed ID: 11970185 [TBL] [Abstract][Full Text] [Related]
12. Yang-Lee zeros of the Q-state Potts model on recursive lattices. Ghulghazaryan RG; Ananikian NS; Sloot PM Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046110. PubMed ID: 12443262 [TBL] [Abstract][Full Text] [Related]
13. High-temperature series expansions for the q-state Potts model on a hypercubic lattice and critical properties of percolation. Hellmund M; Janke W Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051113. PubMed ID: 17279883 [TBL] [Abstract][Full Text] [Related]
14. Ground-state entropies of the Potts antiferromagnet on diamond hierarchical lattices. Nobre FD; Curado EM Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036107. PubMed ID: 12366184 [TBL] [Abstract][Full Text] [Related]
15. Universality of the crossing probability for the Potts model for q=1, 2, 3, 4. Vasilyev OA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026125. PubMed ID: 14525067 [TBL] [Abstract][Full Text] [Related]
16. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model. Dai YW; Cho SY; Batchelor MT; Zhou HQ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062142. PubMed ID: 25019759 [TBL] [Abstract][Full Text] [Related]
17. Random-bond Potts model in the large-q limit. Juhász R; Rieger H; Iglói F Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056122. PubMed ID: 11736029 [TBL] [Abstract][Full Text] [Related]
18. Critical manifold of the Potts model: exact results and homogeneity approximation. Wu FY; Guo W Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):020101. PubMed ID: 23005704 [TBL] [Abstract][Full Text] [Related]
19. Statistics of geometric clusters in Potts model: statistical mechanics approach. Timonin PN Proc Math Phys Eng Sci; 2020 Aug; 476(2240):20200215. PubMed ID: 32922154 [TBL] [Abstract][Full Text] [Related]
20. Calculation of partition functions by measuring component distributions. Hartmann AK Phys Rev Lett; 2005 Feb; 94(5):050601. PubMed ID: 15783622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]