These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 11736269)

  • 1. Wada basins and chaotic invariant sets in the Hénon-Heiles system.
    Aguirre J; Vallejo JC; Sanjuán MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066208. PubMed ID: 11736269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noisy scattering dynamics in the randomly driven Hénon-Heiles oscillator.
    Gan C; Yang S; Lei H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066204. PubMed ID: 21230720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weakly noisy chaotic scattering.
    Bernal JD; Seoane JM; Sanjuán MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032914. PubMed ID: 24125332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basin topology in dissipative chaotic scattering.
    Seoane JM; Aguirre J; Sanjuán MA; Lai YC
    Chaos; 2006 Jun; 16(2):023101. PubMed ID: 16822004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic chaotic scattering: Unveiling scaling laws for trapped trajectories.
    Blesa F; Bernal JD; Seoane JM; Sanjuán MAFM
    Phys Rev E; 2024 Apr; 109(4-1):044204. PubMed ID: 38755803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytic approach to bifurcation cascades in a class of generalized Hénon-Heiles potentials.
    Fedotkin SN; Magner AG; Brack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066219. PubMed ID: 18643362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty dimension and basin entropy in relativistic chaotic scattering.
    Bernal JD; Seoane JM; Sanjuán MAF
    Phys Rev E; 2018 Apr; 97(4-1):042214. PubMed ID: 29758743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding normally hyperbolic invariant manifolds in two and three degrees of freedom with Hénon-Heiles-type potential.
    Naik S; Wiggins S
    Phys Rev E; 2019 Aug; 100(2-1):022204. PubMed ID: 31574621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approximating chaotic saddles for delay differential equations.
    Taylor SR; Campbell SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046215. PubMed ID: 17500986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using scattering theory to compute invariant manifolds and numerical results for the laser-driven Hénon-Heiles system.
    Blazevski D; Franklin J
    Chaos; 2012 Dec; 22(4):043138. PubMed ID: 23278073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient chaos under coordinate transformations in relativistic systems.
    Fernández DS; López ÁG; Seoane JM; Sanjuán MAF
    Phys Rev E; 2020 Jun; 101(6-1):062212. PubMed ID: 32688505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cycling chaotic attractors in two models for dynamics with invariant subspaces.
    Ashwin P; Rucklidge AM; Sturman R
    Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periodic orbit theory for the Hénon-Heiles system in the continuum region.
    Kaidel J; Winkler P; Brack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066208. PubMed ID: 15697485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perturbed ion traps: A generalization of the three-dimensional Henon-Heiles problem.
    Lanchares V; Pascual AI; Palacian J; Yanguas P; Salas JP
    Chaos; 2002 Mar; 12(1):87-99. PubMed ID: 12779536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catastrophic bifurcation from riddled to fractal basins.
    Lai YC; Andrade V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056228. PubMed ID: 11736075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculations of periodic trajectories for the Henon-Heiles Hamiltonian using the monodromy method.
    Davies KT; Huston TE; Baranger M
    Chaos; 1992 Apr; 2(2):215-224. PubMed ID: 12779967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic description of dissipative chaotic scattering.
    Burton LG; Dullin HR; Altmann EG
    Phys Rev E; 2023 Nov; 108(5-1):054223. PubMed ID: 38115440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological aspects of chaotic scattering in higher dimensions.
    Kovács Z; Wiesenfeld L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056207. PubMed ID: 11414990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractal and Wada escape basins in the chaotic particle drift motion in tokamaks with electrostatic fluctuations.
    Souza LC; Mathias AC; Caldas IL; Elskens Y; Viana RL
    Chaos; 2023 Aug; 33(8):. PubMed ID: 38060771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Logarithmic correction to the probability of capture for dissipatively perturbed Hamiltonian systems.
    Haberman R; Ho EK
    Chaos; 1995 Jun; 5(2):374-384. PubMed ID: 12780191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.