These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 11736308)
1. Pore-scale modeling of saturated permeabilities in random sphere packings. Pan C; Hilpert M; Miller CT Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066702. PubMed ID: 11736308 [TBL] [Abstract][Full Text] [Related]
2. Computer simulation of the effect of deformation on the morphology and flow properties of porous media. Bakhshian S; Sahimi M Phys Rev E; 2016 Oct; 94(4-1):042903. PubMed ID: 27841555 [TBL] [Abstract][Full Text] [Related]
3. Large-scale simulation of flow and transport in reconstructed HPLC-microchip packings. Khirevich S; Höltzel A; Ehlert S; Seidel-Morgenstern A; Tallarek U Anal Chem; 2009 Jun; 81(12):4937-45. PubMed ID: 19459621 [TBL] [Abstract][Full Text] [Related]
4. Pore-scale investigation of viscous coupling effects for two-phase flow in porous media. Li H; Pan C; Miller CT Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026705. PubMed ID: 16196749 [TBL] [Abstract][Full Text] [Related]
5. Simulation of Flow in Bidisperse Sphere Packings. Maier RS; Kroll DM; Davis HT; Bernard RS J Colloid Interface Sci; 1999 Sep; 217(2):341-347. PubMed ID: 10469542 [TBL] [Abstract][Full Text] [Related]
6. From random sphere packings to regular pillar arrays: effect of the macroscopic confinement on hydrodynamic dispersion. Daneyko A; Khirevich S; Höltzel A; Seidel-Morgenstern A; Tallarek U J Chromatogr A; 2011 Nov; 1218(45):8231-48. PubMed ID: 21982445 [TBL] [Abstract][Full Text] [Related]
7. Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation. Wu M; Xiao F; Johnson-Paben RM; Retterer ST; Yin X; Neeves KB Lab Chip; 2012 Jan; 12(2):253-61. PubMed ID: 22094719 [TBL] [Abstract][Full Text] [Related]
8. Modelling the dissolution of non-aqueous phase liquid blobs in sphere packings. Dalla E; Hilpert M; Miller C; Pitea D Ann Chim; 2003; 93(7-8):631-8. PubMed ID: 12940596 [TBL] [Abstract][Full Text] [Related]
9. Longitudinal and transverse dispersion in flow through random packings of spheres: a quantitative comparison of experiments, simulations, and models. Scheven UM; Khirevich S; Daneyko A; Tallarek U Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053023. PubMed ID: 25353896 [TBL] [Abstract][Full Text] [Related]
10. Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels. Li R; Yang YS; Pan J; Pereira GG; Taylor JA; Clennell B; Zou C Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033301. PubMed ID: 25314558 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. Piri M; Blunt MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026301. PubMed ID: 15783413 [TBL] [Abstract][Full Text] [Related]
12. Electroosmosis in homogeneously charged micro- and nanoscale random porous media. Wang M; Chen S J Colloid Interface Sci; 2007 Oct; 314(1):264-73. PubMed ID: 17585928 [TBL] [Abstract][Full Text] [Related]
13. Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media. Manwart C; Aaltosalmi U; Koponen A; Hilfer R; Timonen J Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016702. PubMed ID: 12241511 [TBL] [Abstract][Full Text] [Related]
14. Gas slippage effect on microscale porous flow using the lattice Boltzmann method. Tang GH; Tao WQ; He YL Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056301. PubMed ID: 16383739 [TBL] [Abstract][Full Text] [Related]
15. Geometrical cluster ensemble analysis of random sphere packings. Wouterse A; Philipse AP J Chem Phys; 2006 Nov; 125(19):194709. PubMed ID: 17129152 [TBL] [Abstract][Full Text] [Related]
16. Impact of conduit geometry and bed porosity on flow and dispersion in noncylindrical sphere packings. Khirevich S; Höltzel A; Hlushkou D; Tallarek U Anal Chem; 2007 Dec; 79(24):9340-9. PubMed ID: 17985846 [TBL] [Abstract][Full Text] [Related]
17. Structure-transport correlation for the diffusive tortuosity of bulk, monodisperse, random sphere packings. Khirevich S; Höltzel A; Daneyko A; Seidel-Morgenstern A; Tallarek U J Chromatogr A; 2011 Sep; 1218(37):6489-97. PubMed ID: 21831382 [TBL] [Abstract][Full Text] [Related]
18. Critical pore radius and transport properties of disordered hard- and overlapping-sphere models. Klatt MA; Ziff RM; Torquato S Phys Rev E; 2021 Jul; 104(1-1):014127. PubMed ID: 34412300 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results. Piri M; Blunt MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026302. PubMed ID: 15783414 [TBL] [Abstract][Full Text] [Related]
20. SHIFT: an implementation for lattice Boltzmann simulation in low-porosity porous media. Ma J; Wu K; Jiang Z; Couples GD Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056702. PubMed ID: 20866349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]