These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 11736341)

  • 61. Scaling properties of particle density fields formed in simulated turbulent flows.
    Hogan RC; Cuzzi JN; Dobrovolskis AR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1674-80. PubMed ID: 11969949
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Heavy particle concentration in turbulence at dissipative and inertial scales.
    Bec J; Biferale L; Cencini M; Lanotte A; Musacchio S; Toschi F
    Phys Rev Lett; 2007 Feb; 98(8):084502. PubMed ID: 17359102
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Origin of non-Gaussian statistics in hydrodynamic turbulence.
    Li Y; Meneveau C
    Phys Rev Lett; 2005 Oct; 95(16):164502. PubMed ID: 16241804
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Structure functions of fully developed hydrodynamic turbulence: an analytical approach.
    Zybin KP; Sirota VA; Ilyin AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056324. PubMed ID: 21230593
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Inertial clustering of particles in high-Reynolds-number turbulence.
    Saw EW; Shaw RA; Ayyalasomayajula S; Chuang PY; Gylfason A
    Phys Rev Lett; 2008 May; 100(21):214501. PubMed ID: 18518606
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Extended 3D-PTV for direct measurements of Lagrangian statistics of canopy turbulence in a wind tunnel.
    Shnapp R; Shapira E; Peri D; Bohbot-Raviv Y; Fattal E; Liberzon A
    Sci Rep; 2019 May; 9(1):7405. PubMed ID: 31092840
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Conditional Lagrangian acceleration statistics in turbulent flows with Gaussian-distributed velocities.
    Aringazin AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036301. PubMed ID: 15524627
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Relative dispersion in fully developed turbulence: the Richardson's law and intermittency corrections.
    Boffetta G; Sokolov IM
    Phys Rev Lett; 2002 Mar; 88(9):094501. PubMed ID: 11864014
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Lagrangian formulation of turbulent premixed combustion.
    Pagnini G; Bonomi E
    Phys Rev Lett; 2011 Jul; 107(4):044503. PubMed ID: 21867012
    [TBL] [Abstract][Full Text] [Related]  

  • 70. How long do particles spend in vortical regions in turbulent flows?
    Bhatnagar A; Gupta A; Mitra D; Pandit R; Perlekar P
    Phys Rev E; 2016 Nov; 94(5-1):053119. PubMed ID: 27967067
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Universal intermittent properties of particle trajectories in highly turbulent flows.
    Arnèodo A; Benzi R; Berg J; Biferale L; Bodenschatz E; Busse A; Calzavarini E; Castaing B; Cencini M; Chevillard L; Fisher RT; Grauer R; Homann H; Lamb D; Lanotte AS; Lévèque E; Lüthi B; Mann J; Mordant N; Müller WC; Ott S; Ouellette NT; Pinton JF; Pope SB; Roux SG; Toschi F; Xu H; Yeung PK;
    Phys Rev Lett; 2008 Jun; 100(25):254504. PubMed ID: 18643666
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes alpha model and their large-eddy-simulation potential.
    Pietarila Graham J; Holm DD; Mininni PD; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056310. PubMed ID: 18233759
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Superstatistical mechanics of tracer-particle motions in turbulence.
    Reynolds AM
    Phys Rev Lett; 2003 Aug; 91(8):084503. PubMed ID: 14525244
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dependence of turbulent advection on the Lagrangian correlation time.
    Bos WJ; Fang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043020. PubMed ID: 25974593
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Single flow snapshot reveals the future and the past of pairs of particles in turbulence.
    Falkovich G; Frishman A
    Phys Rev Lett; 2013 May; 110(21):214502. PubMed ID: 23745882
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Characterization of intermittency in zooplankton behaviour in turbulence.
    Michalec FG; Schmitt FG; Souissi S; Holzner M
    Eur Phys J E Soft Matter; 2015 Oct; 38(10):108. PubMed ID: 26490249
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Influence of Eulerian and Lagrangian scales on the relative dispersion properties in Lagrangian stochastic models of turbulence.
    Maurizi A; Pagnini G; Tampieri F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):037301. PubMed ID: 15089447
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Persistent accelerations disentangle Lagrangian turbulence.
    Bentkamp L; Lalescu CC; Wilczek M
    Nat Commun; 2019 Aug; 10(1):3550. PubMed ID: 31391458
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Wavelet synthetic method for turbulent flow.
    Zhou L; Rauh C; Delgado A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013011. PubMed ID: 26274273
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Time irreversibility of the statistics of a single particle in compressible turbulence.
    Grafke T; Frishman A; Falkovich G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043022. PubMed ID: 25974595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.