These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11736371)

  • 21. Quantum phase slips in superconducting wires with weak inhomogeneities.
    Vanević M; Nazarov YV
    Phys Rev Lett; 2012 May; 108(18):187002. PubMed ID: 22681107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal and quantum depletion of superconductivity in narrow junctions created by controlled electromigration.
    Baumans XD; Cerbu D; Adami OA; Zharinov VS; Verellen N; Papari G; Scheerder JE; Zhang G; Moshchalkov VV; Silhanek AV; Van de Vondel J
    Nat Commun; 2016 Feb; 7():10560. PubMed ID: 26879257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy-level quantization and single-photon control of phase slips in YBa
    Lyatti M; Wolff MA; Gundareva I; Kruth M; Ferrari S; Dunin-Borkowski RE; Schuck C
    Nat Commun; 2020 Feb; 11(1):763. PubMed ID: 32034143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inherent stochasticity of superconductor-resistor switching behavior in nanowires.
    Shah N; Pekker D; Goldbart PM
    Phys Rev Lett; 2008 Nov; 101(20):207001. PubMed ID: 19113368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Precise in situ tuning of the critical current of a superconducting nanowire using high bias voltage pulses.
    Aref T; Bezryadin A
    Nanotechnology; 2011 Sep; 22(39):395302. PubMed ID: 21891860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deterministic phase slips in mesoscopic superconducting rings.
    Petković I; Lollo A; Glazman LI; Harris JGE
    Nat Commun; 2016 Nov; 7():13551. PubMed ID: 27882924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superconductor-insulator transition in quasi-one-dimensional single-crystal Nb₂PdS₅ nanowires.
    Ning W; Yu H; Liu Y; Han Y; Wang N; Yang J; Du H; Zhang C; Mao Z; Liu Y; Tian M; Zhang Y
    Nano Lett; 2015 Feb; 15(2):869-75. PubMed ID: 25575045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Model of a proposed superconducting phase slip oscillator: a method for obtaining few-photon nonlinearities.
    Hriscu AM; Nazarov YV
    Phys Rev Lett; 2011 Feb; 106(7):077004. PubMed ID: 21405535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts.
    Murphy A; Semenov A; Korneev A; Korneeva Y; Gol'tsman G; Bezryadin A
    Sci Rep; 2015 May; 5():10174. PubMed ID: 25988591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasma modes in capacitively coupled superconducting nanowires.
    Latyshev A; Semenov AG; Zaikin AD
    Beilstein J Nanotechnol; 2022; 13():292-297. PubMed ID: 35330644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Current-voltage characteristics of focused ion beam fabricated superconducting tungsten meanders.
    Kumar A; Husale S; Saravanan MP; Gajar B; Yousuf M; Saini A; Yadav MG; Aloysius RP
    Nanotechnology; 2023 Oct; 35(1):. PubMed ID: 37793353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Statistics of localized phase slips in tunable width planar point contacts.
    Baumans XD; Zharinov VS; Raymenants E; Blanco Alvarez S; Scheerder JE; Brisbois J; Massarotti D; Caruso R; Tafuri F; Janssens E; Moshchalkov VV; Van de Vondel J; Silhanek AV
    Sci Rep; 2017 Mar; 7():44569. PubMed ID: 28300182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superconductivity in 4-Angstrom carbon nanotubes--a short review.
    Wang Z; Shi W; Lortz R; Sheng P
    Nanoscale; 2012 Jan; 4(1):21-41. PubMed ID: 22105840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum phase slip phenomenon in ultra-narrow superconducting nanorings.
    Arutyunov KY; Hongisto TT; Lehtinen JS; Leino LI; Vasiliev AL
    Sci Rep; 2012; 2():293. PubMed ID: 22389762
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superconducting nanowire quantum interference device based on Nb ultrathin films deposited on self-assembled porous Si templates.
    Cirillo C; Prischepa SL; Trezza M; Bondarenko VP; Attanasio C
    Nanotechnology; 2014 Oct; 25(42):425205. PubMed ID: 25277511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of the superconductor-insulator phase diagram for one-dimensional wires.
    Bollinger AT; Dinsmore RC; Rogachev A; Bezryadin A
    Phys Rev Lett; 2008 Nov; 101(22):227003. PubMed ID: 19113514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissipation in a simple model of a topological Josephson junction.
    Matthews P; Ribeiro P; García-García AM
    Phys Rev Lett; 2014 Jun; 112(24):247001. PubMed ID: 24996102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanowire bolometer using a 2D high-temperature superconductor.
    Ghosh S; Jangade DA; Deshmukh MM
    Nanotechnology; 2022 Oct; 34(1):. PubMed ID: 36179585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic-field-induced superconducting state in Zn nanowires driven in the normal state by an electric current.
    Chen Y; Snyder SD; Goldman AM
    Phys Rev Lett; 2009 Sep; 103(12):127002. PubMed ID: 19792453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-charge transistor based on the charge-phase duality of a superconducting nanowire circuit.
    Hongisto TT; Zorin AB
    Phys Rev Lett; 2012 Mar; 108(9):097001. PubMed ID: 22463659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.