These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 11736430)

  • 1. Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol OT microemulsion.
    Vanag VK; Epstein IR
    Phys Rev Lett; 2001 Nov; 87(22):228301. PubMed ID: 11736430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex wave patterns in an effective reaction-diffusion model for chemical reactions in microemulsions.
    Alonso S; John K; Bär M
    J Chem Phys; 2011 Mar; 134(9):094117. PubMed ID: 21384960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex patterns in reactive microemulsions: self-organized nanostructures?
    Epstein IR; Vanag VK
    Chaos; 2005 Dec; 15(4):047510. PubMed ID: 16396603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pentanary cross-diffusion in water-in-oil microemulsions loaded with two components of the Belousov-Zhabotinsky reaction.
    Rossi F; Vanag VK; Epstein IR
    Chemistry; 2011 Feb; 17(7):2138-45. PubMed ID: 21254264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-diffusion in a water-in-oil microemulsion loaded with malonic acid or ferroin. Taylor dispersion method for four-component systems.
    Vanag VK; Rossi F; Cherkashin A; Epstein IR
    J Phys Chem B; 2008 Jul; 112(30):9058-70. PubMed ID: 18610956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns in the Belousov-Zhabotinsky reaction in water-in-oil microemulsion induced by a temperature gradient.
    Carballido-Landeira J; Vanag VK; Epstein IR
    Phys Chem Chem Phys; 2010 Apr; 12(15):3656-65. PubMed ID: 20358062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Black spots" in a surfactant-rich Belousov-Zhabotinsky reaction dispersed in a water-in-oil microemulsion system.
    Kaminaga A; Vanag VK; Epstein IR
    J Chem Phys; 2005 May; 122(17):174706. PubMed ID: 15910059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two- and three-dimensional standing waves in a reaction-diffusion system.
    Bánsági T; Vanag VK; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):045202. PubMed ID: 23214640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale changes induce microscale effects in Turing patterns.
    Carballido-Landeira J; Taboada P; Muñuzuri AP
    Phys Chem Chem Phys; 2011 Mar; 13(10):4596-9. PubMed ID: 21279240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-lasting dashed waves in a reactive microemulsion.
    Carballido-Landeira J; Berenstein I; Taboada P; Mosquera V; Vanag VK; Epstein IR; Pérez-Villar V; Muñuzuri AP
    Phys Chem Chem Phys; 2008 Feb; 10(8):1094-6. PubMed ID: 18270609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature control of pattern formation in the Ru(bpy)(3)(2+)-catalyzed BZ-AOT system.
    McIlwaine R; Vanag VK; Epstein IR
    Phys Chem Chem Phys; 2009 Mar; 11(10):1581-7. PubMed ID: 19240935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear effects of electric fields in the Belousov-Zhabotinsky reaction dissolved in a microemulsion.
    Dähmlow P; Müller SC
    Chaos; 2015 Apr; 25(4):043117. PubMed ID: 25933665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulation of diffusion coefficients via periodic vertical forcing controls the mechanism of Turing pattern formation.
    Guiu-Souto J; Carballido-Landeira J; Pérez-Villar V; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066209. PubMed ID: 21230725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern formation in the Belousov-Zhabotinsky-PAMAM dendrimer system.
    Roncaglia DI; Carballido-Landeira J; Muñuzuri AP
    Phys Chem Chem Phys; 2011 Apr; 13(16):7426-32. PubMed ID: 21431106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of solvents on the pattern formation in a Belousov-Zhabotinsky reaction embedded into a microemulsion.
    Dähmlow P; Vanag VK; Müller SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010902. PubMed ID: 24580160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Organization Induced by Self-Assembly in Microheterogeneous Reaction-Diffusion System.
    Cherkashin AA; Vanag VK
    J Phys Chem B; 2017 Mar; 121(9):2127-2131. PubMed ID: 28201870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagation of spiral waves pinned to circular and rectangular obstacles.
    Sutthiopad M; Luengviriya J; Porjai P; Phantu M; Kanchanawarin J; Müller SC; Luengviriya C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052912. PubMed ID: 26066234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Malonic acid concentration as a control parameter in the kinetic analysis of the Belousov-Zhabotinsky reaction under batch conditions.
    Blagojević SM; Anić SR; Cupić ZD; Pejić ND; Kolar-Anić LZ
    Phys Chem Chem Phys; 2008 Nov; 10(44):6658-64. PubMed ID: 18989478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ternary phase diagram for the Belousov-Zhabotinsky reaction-induced mechanical oscillation of intelligent PNIPAM colloids.
    Shen J; Pullela S; Marquez M; Cheng Z
    J Phys Chem A; 2007 Dec; 111(48):12081-5. PubMed ID: 17994710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discontinuously propagating waves in the bathoferroin-catalyzed Belousov-Zhabotinsky reaction incorporated into a microemulsion.
    Cherkashin AA; Vanag VK; Epstein IR
    J Chem Phys; 2008 May; 128(20):204508. PubMed ID: 18513033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.