These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 11736475)

  • 1. Evidence for intervalence band coherences in semiconductor quantum wells via coherently coupled optical Stark shifts.
    Donovan ME; Schülzgen A; Lee J; Blanche PA; Peyghambarian N; Khitrova G; Gibbs HM; Rumyantsev I; Kwong NH; Takayama R; Yang ZS; Binder R
    Phys Rev Lett; 2001 Dec; 87(23):237402. PubMed ID: 11736475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical two-dimensional fourier transform spectroscopy of semiconductor quantum wells.
    Cundiff ST; Zhang T; Bristow AD; Karaiskaj D; Dai X
    Acc Chem Res; 2009 Sep; 42(9):1423-32. PubMed ID: 19555068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-quantum many-body coherences in two-dimensional fourier-transform spectra of exciton resonances in semiconductor quantum wells.
    Karaiskaj D; Bristow AD; Yang L; Dai X; Mirin RP; Mukamel S; Cundiff ST
    Phys Rev Lett; 2010 Mar; 104(11):117401. PubMed ID: 20366499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells.
    Smith RP; Wahlstrand JK; Funk AC; Mirin RP; Cundiff ST; Steiner JT; Schafer M; Kira M; Koch SW
    Phys Rev Lett; 2010 Jun; 104(24):247401. PubMed ID: 20867334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems.
    Li JB; Kim NC; Cheng MT; Zhou L; Hao ZH; Wang QQ
    Opt Express; 2012 Jan; 20(2):1856-61. PubMed ID: 22274530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signatures of Quantum Coherences in Rydberg Excitons.
    Grünwald P; Aßmann M; Heckötter J; Fröhlich D; Bayer M; Stolz H; Scheel S
    Phys Rev Lett; 2016 Sep; 117(13):133003. PubMed ID: 27715094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Stark effect on excitons in GaAs quantum wells.
    Von Lehmen A; Chemla DS; Zucker JE; Heritage JP
    Opt Lett; 1986 Oct; 11(10):609-11. PubMed ID: 19738703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separating homogeneous and inhomogeneous line widths of heavy- and light-hole excitons in weakly disordered semiconductor quantum wells.
    Bristow AD; Zhang T; Siemens ME; Cundiff ST; Mirin RP
    J Phys Chem B; 2011 May; 115(18):5365-71. PubMed ID: 21384940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening effect on the exciton mediated nonlinear optical susceptibility of semiconductor quantum dots.
    Bautista JE; Lyra ML; Lima RP
    Opt Express; 2014 Nov; 22(23):28270-5. PubMed ID: 25402068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strongly driven exciton resonances in quantum wells: light-induced dressing versus coulomb scattering.
    Ciuti C; Piermarocchi C; Savona V; Selbmann PE; Schwendimann P; Quattropani A
    Phys Rev Lett; 2000 Feb; 84(8):1752-5. PubMed ID: 11017617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circularly Polarized Optical Stark Effect in CdSe Colloidal Quantum Wells.
    Diroll BT
    Nano Lett; 2020 Nov; 20(11):7889-7895. PubMed ID: 33118352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stark effect of interactive electron-hole pairs in spherical semiconductor quantum dots.
    Billaud B; Picco M; Truong TT
    J Phys Condens Matter; 2009 Sep; 21(39):395302. PubMed ID: 21832385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical control of the exciton-biexciton splitting in self-assembled InGaAs quantum dots.
    Kaniber M; Huck MF; Müller K; Clark EC; Troiani F; Bichler M; Krenner HJ; Finley JJ
    Nanotechnology; 2011 Aug; 22(32):325202. PubMed ID: 21772067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of THz radiation with intervalence band transitions in microcavities.
    Pereira MF; Faragai IA
    Opt Express; 2014 Feb; 22(3):3439-46. PubMed ID: 24663634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-energy side-peak emission of exciton-polariton condensates in high density regime.
    Horikiri T; Yamaguchi M; Kamide K; Matsuo Y; Byrnes T; Ishida N; Löffler A; Höfling S; Shikano Y; Ogawa T; Forchel A; Yamamoto Y
    Sci Rep; 2016 May; 6():25655. PubMed ID: 27193700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells.
    Sarkar S; Guo Y; Wang H
    Opt Express; 2006 Apr; 14(7):2845-50. PubMed ID: 19516421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical stark effects in j-aggregate-metal hybrid nanostructures exhibiting a strong exciton-surface-plasmon-polariton interaction.
    Vasa P; Wang W; Pomraenke R; Maiuri M; Manzoni C; Cerullo G; Lienau C
    Phys Rev Lett; 2015 Jan; 114(3):036802. PubMed ID: 25659013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent measurements of high-order electronic correlations in quantum wells.
    Turner DB; Nelson KA
    Nature; 2010 Aug; 466(7310):1089-92. PubMed ID: 20740011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.