These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11736479)

  • 21. Experimental evidence of localized oscillations in the photosensitive chlorine dioxide-iodine-malonic acid reaction.
    Míguez DG; Alonso S; Muñuzuri AP; Sagués F
    Phys Rev Lett; 2006 Oct; 97(17):178301. PubMed ID: 17155511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Turing pattern formation induced by spatially correlated noise.
    Sanz-Anchelergues A; Zhabotinsky AM; Epstein IR; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056124. PubMed ID: 11414978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stripe-hexagon competition in forced pattern-forming systems with broken up-down symmetry.
    Peter R; Hilt M; Ziebert F; Bammert J; Erlenkämper C; Lorscheid N; Weitenberg C; Winter A; Hammele M; Zimmermann W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046212. PubMed ID: 15903775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling of turing structures in the chlorite--iodide--malonic Acid--starch reaction system.
    Lengyel I; Epstein IR
    Science; 1991 Feb; 251(4994):650-2. PubMed ID: 17741380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterizing topological transitions in a Turing-pattern-forming reaction-diffusion system.
    Guiu-Souto J; Carballido-Landeira J; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056205. PubMed ID: 23004841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coexistence of Eckhaus instability in forced zigzag Turing patterns.
    Berenstein I; Muñuzuri AP
    J Chem Phys; 2008 Sep; 129(11):114508. PubMed ID: 19044970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stable squares and other oscillatory turing patterns in a reaction-diffusion model.
    Yang L; Zhabotinsky AM; Epstein IR
    Phys Rev Lett; 2004 May; 92(19):198303. PubMed ID: 15169455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Turing pattern formation in a two-layer system: superposition and superlattice patterns.
    Berenstein I; Dolnik M; Yang L; Zhabotinsky AM; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046219. PubMed ID: 15600507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A chemical approach to designing Turing patterns in reaction-diffusion systems.
    Lengyel I; Epstein IR
    Proc Natl Acad Sci U S A; 1992 May; 89(9):3977-9. PubMed ID: 11607288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-monotonic resonance in a spatially forced Lengyel-Epstein model.
    Haim L; Hagberg A; Meron E
    Chaos; 2015 Jun; 25(6):064307. PubMed ID: 26117118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unravelling diverse spatiotemporal orders in chlorine dioxide-iodine-malonic acid reaction-diffusion system through circularly polarized electric field and photo-illumination.
    Maiti T; Ghosh P
    J Chem Phys; 2023 Nov; 159(17):. PubMed ID: 37909457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of Turing patterns under spatiotemporal forcing.
    Rüdiger S; Míguez DG; Muñuzuri AP; Sagués F; Casademunt J
    Phys Rev Lett; 2003 Mar; 90(12):128301. PubMed ID: 12688908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of square spatial periodic forcing on oscillatory hexagon patterns in coupled reaction-diffusion systems.
    Fan W; Ma F; Tong Y; Liu Q; Liu R; He Y; Liu F
    Phys Chem Chem Phys; 2023 Oct; 25(38):26023-26031. PubMed ID: 37740348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transient turing structures in a gradient-free closed system.
    Lengyel I; Kádár S; Epstein IR
    Science; 1993 Jan; 259(5094):493-5. PubMed ID: 17734167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Why Turing mechanism is an obstacle to stationary periodic patterns in bounded reaction-diffusion media with advection.
    Yochelis A; Sheintuch M
    Phys Chem Chem Phys; 2010 Apr; 12(16):3957-60. PubMed ID: 20379487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Turing patterns, spatial bistability, and front interactions in the [ClO2, I2, I-, CH2(COOH)2] reaction.
    Strier DE; De Kepper P; Boissonade J
    J Phys Chem A; 2005 Feb; 109(7):1357-63. PubMed ID: 16833452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Galerkin analysis of light-induced patterns in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.
    Ghosh P; Sen S; Riaz SS; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056216. PubMed ID: 19518545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of the Hopf-Turing transition by time-delayed global feedback in a reaction-diffusion system.
    Ghosh P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016222. PubMed ID: 21867288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spontaneous symmetry breaking turing-type pattern formation in a confined Dictyostelium cell mass.
    Sawai S; Maeda Y; Sawada Y
    Phys Rev Lett; 2000 Sep; 85(10):2212-5. PubMed ID: 10970500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Helical Turing patterns in the Lengyel-Epstein model in thin cylindrical layers.
    Bánsági T; Taylor AF
    Chaos; 2015 Jun; 25(6):064308. PubMed ID: 26117119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.