These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11736552)

  • 1. Noise-induced dynamics in bistable systems with delay.
    Tsimring LS; Pikovsky A
    Phys Rev Lett; 2001 Dec; 87(25):250602. PubMed ID: 11736552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance dynamics evoked via noise recycling procedure.
    Sun Z; Yang X; Xu W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061125. PubMed ID: 23005069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating resonance behaviors by noise recycling in bistable systems with time delay.
    Sun Z; Yang X; Xiao Y; Xu W
    Chaos; 2014 Jun; 24(2):023126. PubMed ID: 24985440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise-induced coherence in bistable systems with multiple time delays.
    Jiang Y; Dong SH; Lozada-Cassou M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056225. PubMed ID: 15244922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of residence times of time-delayed bistable systems driven by noise.
    Masoller C
    Phys Rev Lett; 2003 Jan; 90(2):020601. PubMed ID: 12570531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation of a bistable system in the presence of noise and delay.
    Houlihan J; Goulding D; Busch T; Masoller C; Huyet G
    Phys Rev Lett; 2004 Feb; 92(5):050601. PubMed ID: 14995292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency adaptation in controlled stochastic resonance utilizing delayed feedback method: two-pole approximation for response function.
    Tutu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061106. PubMed ID: 21797301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delay-induced stochastic bifurcations in a bistable system under white noise.
    Sun Z; Fu J; Xiao Y; Xu W
    Chaos; 2015 Aug; 25(8):083102. PubMed ID: 26328553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative dynamics in a network of stochastic elements with delayed feedback.
    Huber D; Tsimring LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036150. PubMed ID: 15903536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay of time-delayed feedback control and temporally correlated noise in excitable systems.
    Brandstetter S; Dahlem MA; Schöll E
    Philos Trans A Math Phys Eng Sci; 2010 Jan; 368(1911):391-421. PubMed ID: 20008408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of an ensemble of noisy bistable elements with global time delayed coupling.
    Huber D; Tsimring LS
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):260601. PubMed ID: 14754032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplicative-noise-induced coherence resonance via two different mechanisms in bistable neural models.
    Tang J; Jia Y; Yi M; Ma J; Li J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061905. PubMed ID: 18643298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evidence of coherence resonance in a time-delayed bistable system.
    Arteaga MA; Valencia M; Sciamanna M; Thienpont H; López-Amo M; Panajotov K
    Phys Rev Lett; 2007 Jul; 99(2):023903. PubMed ID: 17678225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric bistable systems subject to periodic and stochastic forcing in the strongly nonlinear regime: the power spectrum.
    Nikitin A; Stocks NG; Bulsara AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041138. PubMed ID: 17994967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delay-induced excitability.
    Piwonski T; Houlihan J; Busch T; Huyet G
    Phys Rev Lett; 2005 Jul; 95(4):040601. PubMed ID: 16090791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback: Propagation failure and control mechanisms.
    Boubendir Y; Méndez V; Rotstein HG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036601. PubMed ID: 21230197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delay-induced resonances in an optical system with feedback.
    Buldú JM; García-Ojalvo J; Torrent MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046207. PubMed ID: 15169090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise-induced transitions in state-dependent dichotomous processes.
    Laio F; Ridolfi L; D'Odorico P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031137. PubMed ID: 18851023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise-induced suppression of nonlinear distortions in a bistable system with biharmonic excitation in vibrational resonance.
    Chizhevsky VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032902. PubMed ID: 26465535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental evidence of "vibrational resonance" in an optical system.
    Chizhevsky VN; Smeu E; Giacomelli G
    Phys Rev Lett; 2003 Nov; 91(22):220602. PubMed ID: 14683224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.