These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 11737263)
21. Dual mode recognition of two isoacceptor tRNAs by mammalian mitochondrial seryl-tRNA synthetase. Shimada N; Suzuki T; Watanabe K J Biol Chem; 2001 Dec; 276(50):46770-8. PubMed ID: 11577083 [TBL] [Abstract][Full Text] [Related]
22. The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex. Valente L; Shigi N; Suzuki T; Zeviani M Biochim Biophys Acta; 2009 Aug; 1792(8):791-5. PubMed ID: 19524667 [TBL] [Abstract][Full Text] [Related]
23. Amber suppression in Escherichia coli by unusual mitochondria-like transfer RNAs. Bourdeau V; Steinberg SV; Ferbeyre G; Emond R; Cermakian N; Cedergren R Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1375-80. PubMed ID: 9465022 [TBL] [Abstract][Full Text] [Related]
24. Aminoacyl-tRNA surveillance by EF-Tu in mammalian mitochondria. Nagao A; Suzuki T; Suzuki T Nucleic Acids Symp Ser (Oxf); 2007; (51):41-2. PubMed ID: 18029576 [TBL] [Abstract][Full Text] [Related]
25. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702 [TBL] [Abstract][Full Text] [Related]
26. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Nissen P; Kjeldgaard M; Thirup S; Polekhina G; Reshetnikova L; Clark BF; Nyborg J Science; 1995 Dec; 270(5241):1464-72. PubMed ID: 7491491 [TBL] [Abstract][Full Text] [Related]
27. Simultaneous and functional binding of SmpB and EF-Tu-TP to the alanyl acceptor arm of tmRNA. Barends S; Karzai AW; Sauer RT; Wower J; Kraal B J Mol Biol; 2001 Nov; 314(1):9-21. PubMed ID: 11724528 [TBL] [Abstract][Full Text] [Related]
28. A protein extension to shorten RNA: elongated elongation factor-Tu recognizes the D-arm of T-armless tRNAs in nematode mitochondria. Sakurai M; Watanabe Y; Watanabe K; Ohtsuki T Biochem J; 2006 Oct; 399(2):249-56. PubMed ID: 16859488 [TBL] [Abstract][Full Text] [Related]
29. Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study. Dell VA; Miller DL; Johnson AE Biochemistry; 1990 Feb; 29(7):1757-63. PubMed ID: 2110000 [TBL] [Abstract][Full Text] [Related]
30. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes. Jacquet E; Parmeggiani A Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669 [TBL] [Abstract][Full Text] [Related]
31. Mytilus mitochondrial DNA contains a functional gene for a tRNASer(UCN) with a dihydrouridine arm-replacement loop and a pseudo-tRNASer(UCN) gene. Beagley CT; Okimoto R; Wolstenholme DR Genetics; 1999 Jun; 152(2):641-52. PubMed ID: 10353906 [TBL] [Abstract][Full Text] [Related]
32. Structural dynamics of translation elongation factor Tu during aa-tRNA delivery to the ribosome. Kavaliauskas D; Chen C; Liu W; Cooperman BS; Goldman YE; Knudsen CR Nucleic Acids Res; 2018 Sep; 46(16):8651-8661. PubMed ID: 30107527 [TBL] [Abstract][Full Text] [Related]
34. Dual-mode recognition of noncanonical tRNAs(Ser) by seryl-tRNA synthetase in mammalian mitochondria. Chimnaronk S; Gravers Jeppesen M; Suzuki T; Nyborg J; Watanabe K EMBO J; 2005 Oct; 24(19):3369-79. PubMed ID: 16163389 [TBL] [Abstract][Full Text] [Related]
35. Recognition of the universally conserved 3'-CCA end of tRNA by elongation factor EF-Tu. Liu JC; Liu M; Horowitz J RNA; 1998 Jun; 4(6):639-46. PubMed ID: 9622123 [TBL] [Abstract][Full Text] [Related]
36. Cryo-EM shows stages of initial codon selection on the ribosome by aa-tRNA in ternary complex with GTP and the GTPase-deficient EF-TuH84A. Fislage M; Zhang J; Brown ZP; Mandava CS; Sanyal S; Ehrenberg M; Frank J Nucleic Acids Res; 2018 Jun; 46(11):5861-5874. PubMed ID: 29733411 [TBL] [Abstract][Full Text] [Related]
37. Mechanistic studies of the translational elongation cycle in mammalian mitochondria. Woriax VL; Bullard JM; Ma L; Yokogawa T; Spremulli LL Biochim Biophys Acta; 1997 May; 1352(1):91-101. PubMed ID: 9177487 [TBL] [Abstract][Full Text] [Related]
38. Structural features in aminoacyl-tRNAs required for recognition by elongation factor Tu. Faulhammer HG; Joshi RL FEBS Lett; 1987 Jun; 217(2):203-11. PubMed ID: 3297780 [TBL] [Abstract][Full Text] [Related]
39. Changes in aminoacyl transfer ribonucleic acid conformation upon association with elongation factor Tu-guanosine 5'-triphosphate. fluorescence studies of ternary complex conformation and topology. Adkins HJ; Miller DL; Johnson AE Biochemistry; 1983 Mar; 22(5):1208-17. PubMed ID: 6551178 [TBL] [Abstract][Full Text] [Related]
40. Effects of mutagenesis of residue 221 on the properties of bacterial and mitochondrial elongation factor EF-Tu. Hunter SE; Spremulli LL Biochim Biophys Acta; 2004 Jun; 1699(1-2):173-82. PubMed ID: 15158725 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]