These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11738042)

  • 1. The 1.6 A crystal structure of E. coli argininosuccinate synthetase suggests a conformational change during catalysis.
    Lemke CT; Howell PL
    Structure; 2001 Dec; 9(12):1153-64. PubMed ID: 11738042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate induced conformational changes in argininosuccinate synthetase.
    Lemke CT; Howell PL
    J Biol Chem; 2002 Apr; 277(15):13074-81. PubMed ID: 11809762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of human argininosuccinate synthetase.
    Karlberg T; Collins R; van den Berg S; Flores A; Hammarström M; Högbom M; Holmberg Schiavone L; Uppenberg J
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):279-86. PubMed ID: 18323623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of argininosuccinate synthetase in enzyme-ATP substrates and enzyme-AMP product forms: stereochemistry of the catalytic reaction.
    Goto M; Omi R; Miyahara I; Sugahara M; Hirotsu K
    J Biol Chem; 2003 Jun; 278(25):22964-71. PubMed ID: 12684518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of argininosuccinate synthetase from Thermus thermophilus HB8. Structural basis for the catalytic action.
    Goto M; Nakajima Y; Hirotsu K
    J Biol Chem; 2002 May; 277(18):15890-6. PubMed ID: 11844799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of novel splicing and missense mutations identified in the ASS1 gene in classical citrullinemia patients.
    Kimani JK; Wei T; Chol K; Li Y; Yu P; Ye S; Huang X; Qi M
    Clin Chim Acta; 2015 Jan; 438():323-9. PubMed ID: 25179242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic mutations in argininosuccinate synthetase deficiency: characterisation and in vitro correction by substrate supplementation.
    Diez-Fernandez C; Wellauer O; Gemperle C; Rüfenacht V; Fingerhut R; Häberle J
    J Med Genet; 2016 Oct; 53(10):710-9. PubMed ID: 27287393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures of dimeric nonstandard nucleotide triphosphate pyrophosphatase from Pyrococcus horikoshii OT3: functional significance of interprotomer conformational changes.
    Lokanath NK; Pampa KJ; Takio K; Kunishima N
    J Mol Biol; 2008 Jan; 375(4):1013-25. PubMed ID: 18062990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray crystal structure of glycinamide ribonucleotide synthetase from Escherichia coli.
    Wang W; Kappock TJ; Stubbe J; Ealick SE
    Biochemistry; 1998 Nov; 37(45):15647-62. PubMed ID: 9843369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.
    Yang G; Sandalova T; Lohman K; Lindqvist Y; Rendina AR
    Biochemistry; 1997 Apr; 36(16):4751-60. PubMed ID: 9125495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of dimeric SecA, the Escherichia coli preprotein translocase motor.
    Papanikolau Y; Papadovasilaki M; Ravelli RB; McCarthy AA; Cusack S; Economou A; Petratos K
    J Mol Biol; 2007 Mar; 366(5):1545-57. PubMed ID: 17229438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase: a new structural family with the P-loop nucleoside triphosphate hydrolase fold.
    Matte A; Goldie H; Sweet RM; Delbaere LT
    J Mol Biol; 1996 Feb; 256(1):126-43. PubMed ID: 8609605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of human wild-type and mutant argininosuccinate synthetase proteins expressed in bacterial cells.
    Shaheen N; Kobayashi K; Terazono H; Fukushige T; Horiuchi M; Saheki T
    Enzyme Protein; 1994-1995; 48(5-6):251-64. PubMed ID: 8792870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of asparagine synthetase reveals a close evolutionary relationship to class II aminoacyl-tRNA synthetase.
    Nakatsu T; Kato H; Oda J
    Nat Struct Biol; 1998 Jan; 5(1):15-9. PubMed ID: 9437423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray crystal structure of aminoimidazole ribonucleotide synthetase (PurM), from the Escherichia coli purine biosynthetic pathway at 2.5 A resolution.
    Li C; Kappock TJ; Stubbe J; Weaver TM; Ealick SE
    Structure; 1999 Sep; 7(9):1155-66. PubMed ID: 10508786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate: the mechanism of discrimination between asparagine and aspartic acid.
    Berthet-Colominas C; Seignovert L; Härtlein M; Grotli M; Cusack S; Leberman R
    EMBO J; 1998 May; 17(10):2947-60. PubMed ID: 9582288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes during the catalytic cycle of gluconate kinase as revealed by X-ray crystallography.
    Kraft L; Sprenger GA; Lindqvist Y
    J Mol Biol; 2002 May; 318(4):1057-69. PubMed ID: 12054802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of E. coli pantothenate synthetase confirms it as a member of the cytidylyltransferase superfamily.
    von Delft F; Lewendon A; Dhanaraj V; Blundell TL; Abell C; Smith AG
    Structure; 2001 May; 9(5):439-50. PubMed ID: 11377204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the human multidrug resistance protein 1 nucleotide binding domain 1 bound to Mg2+/ATP reveals a non-productive catalytic site.
    Ramaen O; Leulliot N; Sizun C; Ulryck N; Pamlard O; Lallemand JY; Tilbeurgh Hv; Jacquet E
    J Mol Biol; 2006 Jun; 359(4):940-9. PubMed ID: 16697012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures of dCTP deaminase from Escherichia coli with bound substrate and product: reaction mechanism and determinants of mono- and bifunctionality for a family of enzymes.
    Johansson E; Fanø M; Bynck JH; Neuhard J; Larsen S; Sigurskjold BW; Christensen U; Willemoës M
    J Biol Chem; 2005 Jan; 280(4):3051-9. PubMed ID: 15539408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.