BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11738645)

  • 1. Intracellular pH regulation of neurons in chemosensitive and nonchemosensitive areas of brain slices.
    Putnam RW
    Respir Physiol; 2001 Dec; 129(1-2):37-56. PubMed ID: 11738645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular pH regulation in neurons from chemosensitive and nonchemosensitive regions of Helix aspersa.
    Goldstein JI; Mok JM; Simon CM; Leiter JC
    Am J Physiol Regul Integr Comp Physiol; 2000 Aug; 279(2):R414-23. PubMed ID: 10938227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular pH regulation in neurons from chemosensitive and nonchemosensitive areas of the medulla.
    Ritucci NA; Chambers-Kersh L; Dean JB; Putnam RW
    Am J Physiol; 1998 Oct; 275(4):R1152-63. PubMed ID: 9756546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular pH response to hypercapnia in neurons from chemosensitive areas of the medulla.
    Ritucci NA; Dean JB; Putnam RW
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R433-41. PubMed ID: 9249582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of intracellular pH to acute anoxia in individual neurons from chemosensitive and nonchemosensitive regions of the medulla.
    Chambers-Kersh L; Ritucci NA; Dean JB; Putnam RW
    Adv Exp Med Biol; 2000; 475():453-64. PubMed ID: 10849686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Somatic vs. dendritic responses to hypercapnia in chemosensitive locus coeruleus neurons from neonatal rats.
    Ritucci NA; Dean JB; Putnam RW
    Am J Physiol Cell Physiol; 2005 Nov; 289(5):C1094-104. PubMed ID: 16014703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones.
    Filosa JA; Dean JB; Putnam RW
    J Physiol; 2002 Jun; 541(Pt 2):493-509. PubMed ID: 12042354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the chemosensitive response of individual solitary complex neurons from adult rats.
    Nichols NL; Mulkey DK; Wilkinson KA; Powell FL; Dean JB; Putnam RW
    Am J Physiol Regul Integr Comp Physiol; 2009 Mar; 296(3):R763-73. PubMed ID: 19144749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventrolateral neurons of medullary organotypic cultures: intracellular pH regulation and bioelectric activity.
    Wiemann M; Bingmann D
    Respir Physiol; 2001 Dec; 129(1-2):57-70. PubMed ID: 11738646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular mechanisms involved in CO(2) and acid signaling in chemosensitive neurons.
    Putnam RW; Filosa JA; Ritucci NA
    Am J Physiol Cell Physiol; 2004 Dec; 287(6):C1493-526. PubMed ID: 15525685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of the response of rat medullary raphe neurones to independent changes in pH(o) and P(CO2).
    Wang W; Bradley SR; Richerson GB
    J Physiol; 2002 May; 540(Pt 3):951-70. PubMed ID: 11986382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of membrane potential and intracellular pH to hypercapnia in neurons and astrocytes from rat retrotrapezoid nucleus.
    Ritucci NA; Erlichman JS; Leiter JC; Putnam RW
    Am J Physiol Regul Integr Comp Physiol; 2005 Sep; 289(3):R851-61. PubMed ID: 15905224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental changes in intracellular pH regulation in medullary neurons of the rat.
    Nottingham S; Leiter JC; Wages P; Buhay S; Erlichman JS
    Am J Physiol Regul Integr Comp Physiol; 2001 Dec; 281(6):R1940-51. PubMed ID: 11705781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress decreases pHi and Na(+)/H(+) exchange and increases excitability of solitary complex neurons from rat brain slices.
    Mulkey DK; Henderson RA; Ritucci NA; Putnam RW; Dean JB
    Am J Physiol Cell Physiol; 2004 Apr; 286(4):C940-51. PubMed ID: 14668260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple targets of chemosensitive signaling in locus coeruleus neurons: role of K+ and Ca2+ channels.
    Filosa JA; Putnam RW
    Am J Physiol Cell Physiol; 2003 Jan; 284(1):C145-55. PubMed ID: 12388081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The chemosensitive response of neurons from the locus coeruleus (LC) to hypercapnic acidosis with clamped intracellular pH.
    Hartzler LK; Dean JB; Putnam RW
    Adv Exp Med Biol; 2008; 605():333-7. PubMed ID: 18085295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRP channels are involved in mediating hypercapnic Ca2+ responses in rat glia-rich medullary cultures independent of extracellular pH.
    Hirata Y; Oku Y
    Cell Calcium; 2010; 48(2-3):124-32. PubMed ID: 20728216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of extracellular acid-base disturbances on the intracellular pH of neurones cultured from rat medullary raphe or hippocampus.
    Bouyer P; Bradley SR; Zhao J; Wang W; Richerson GB; Boron WF
    J Physiol; 2004 Aug; 559(Pt 1):85-101. PubMed ID: 15194736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO2 chemosensitivity in Helix aspersa: three potassium currents mediate pH-sensitive neuronal spike timing.
    Denton JS; McCann FV; Leiter JC
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C292-304. PubMed ID: 16928774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade of Na+/H+ exchanger type 3 causes intracellular acidification and hyperexcitability via inhibition of pH-sensitive K+ channels in chemosensitive respiratory neurons of the dorsal vagal nucleus in rats.
    Zhang J; Peng H; Veasey SC; Ma J; Wang GF; Wang KW
    Neurosci Bull; 2014 Feb; 30(1):43-52. PubMed ID: 23990222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.